首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we systematically study the spectroscopic properties of Tb3+/Dy3+ co-doped phosphate glasses in the visible spectral region and explore the sensitization role of Dy3+ in the enhancement of visible fluorescence of Tb3+ ions. Judd-Ofelt parameters Ω2 and Ω46 of the phosphate glass as host for Tb3+ are calculated as 21.60 × 10-20 cm2 and 0.73, respectively, based on the measured spectral absorption. Multiple energy transfer (ET) routes from Dy3+ to Tb3+ and their efficiencies are characterized, and the enhanced fluorescence properties of Tb3+ are investigated, including the emission spectral strength and the spontaneous emission lifetime as functions of Dy3+ doping concentration. The efficient nonradiative ET processes between Dy3+ and Tb3+ allow a moderate concentration level of Tb3+ to achieve favorably stronger spectral absorption at blue and ultraviolet wavelengths. Tb3+/Dy3+ co-doped phosphate glass shows promising potential for phosphors and lasing operation at visible wavelengths.  相似文献   

2.
Using the melt-quench technique, potassium zinc borophosphate (KZnBP) glasses incorporated with Dy3+, Eu3+, and Dy3+/Eu3+ ions individually and combinedly were prepared, and their photoluminescence (PL)-related features were investigated. The KZnBP glass containing an optimized content of Dy3+ (0.5 mol%) is co-doped with Eu3+ in various contents, and the energy transfer (ET) process between them was studied at λexci = 349, 364, 387 (Dy3+), and 394 nm (Eu3+). The Dy3+/Eu3+ co-doped system, when excited with Dy3+ excitations has resulted in a significant decrease in the intensity of Dy3+ peaks observed at 480 nm (4F9/26H15/2, blue) and 574 nm (4F9/26H13/2, yellow), with simultaneous enhancement of the intensity of Eu3+ peaks at 591 nm (5D07F1, orange) and 617 nm (5D07F2, red). This trend is due to the efficient energy transfer from Dy3+ to Eu3+, indicating that Eu3+ ions were sensitized by Dy3+ ions. Dexter's theory and the Inokuti–Hirayama (I–H) model revealed that the dipole–dipole interaction is accountable for the energy transfer from Dy3+ to Eu3+ through energy-transfer channels [4F9/2(Dy3+)+7F1,2(Eu3+)→6H15/2(Dy3+)+5D2(Eu3+)] and [4F9/2(Dy3+)+7F0(Eu3+)→6H13/2(Dy3+)+5D0(Eu3+)]. The color coordinates of the Dy3+/Eu3+ co-doped glasses under various excitations fall within the white light emission spectrum, indicating their potential application in warm white LEDs.  相似文献   

3.
Eu3+/Nd3+ co-doped multicomponent borosilicate glasses (ND1E: 10BaO +10ZnF2+10K2O +20SiO2+(49-x) B2O3+1Nd2O3+xEu2O3) were prepared by conventional melting and rapid quench technique to evaluate the effect of Eu3+ ions in the Nd3+ doped glasses. Thermal stability, structural and spectroscopic characteristics of the ND1E glasses were investigated by using DSC, XRD, FTIR, Optical absorption, excitation and emission measurements. The Judd – Ofelt (JO) analysis is implemented to the absorption spectrum of the prepared glassy matrix in order to identify their potential applicability in lasing devices. Enhancement of 7F05L6 band (394 nm) with the increasing concentration of Eu3+ ion in the Nd3+ excitation spectra (λemi = 1060 nm) reveals the possibility of obtaining the characteristic fluorescence spectra of Nd3+ ion with the typical excitation wavelengths (Nd3+ = 584 nm and Eu3+ = 394 nm) of both rare earth ions and it is further verified from the emission spectrum. This interesting luminescence effect of showing excellent visible and NIR emission under 394 nm excitation mainly attributes the energy transfer mechanism between the RE3+ ions and the reason underlying this effect is discussed in detail with the help of partial energy level diagram. Energy transfer efficiency between the Eu3+ and Nd3+ ions were evaluated by using the radiative lifetimes of the prepared glasses. Also, a comparison of radiative properties and lasing characteristics of Eu3+/Nd3+ co-doped glasses with other Nd3+ glasses are reported. The emission intensities were characterized using CIE chromaticity diagram and the observed CIE coordinates shows a shift towards reddish – orange region with the increase in Eu3+ concentration. The quantum efficiency of the prepared glasses was determined experimentally. The obtained results suggest that the ND1E glassy system can be considered as a potential candidate for visible and NIR luminescence applications.  相似文献   

4.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

5.
An ever increasing demand for white light-emitting diodes (W-LEDs) results in the gradual growth of research on functionalized luminescent glasses. In this paper, single-composition tunable white-emitting Eu2+-Tb3+-Eu3+ tri-activated glasses were synthesized by melt quenching method without additional reducing atmosphere. The coexistence of Eu2+ and Eu3+ was confirmed by ultraviolet-visible transmission spectra, photoluminescent spectra, fluorescence decay curves, and X-ray photoelectron spectroscopy. Tb3+ can act as bridge to connect Eu2+-Eu3+ luminescent centers by energy transfer. Tone-tunable white light can be achieved by coupling the emission centered at 412, 541, and 612 nm contributed from Eu2+, Tb3+, and Eu3+, respectively. By adjusting the relative content of Eu2+/Tb3+/Eu3+, ideal chromaticity coordinates of (0.33, 0.33) can be achieved under excitation of ultraviolet light. High thermal stability and tiny chromaticity shift were exhibited in samples. These results suggest that Eu2+-Tb3+-Eu3+ tri-activated glasses have great potential application in ultraviolet-driven W-LEDs.  相似文献   

6.
采用高温固相法合成了Ca2B5O9Cl:Eu2 蓝色荧光粉,并对其发光性质进行了研究.该荧光粉在近紫外370 nm激发下的发射光谱为峰值位于453 nm的宽带发射,对应了Eu2 的4f65d→4f78S7/2特征跃迁发射.监测453nm的发射峰,得到其激发光谱为250~450nm的宽带,与产生350~410nm辐射的紫外发光二极管(ultraviolet light-emitting diode,UV-LED)管芯匹配很好.当CaCl2用量为理论用量的1.1倍,H3BO3用量为理论用量的1.3倍,Eu2 掺杂浓度为6%时,蓝光发射最强.Ca2B5O9Cl:Eu2 是适合UV-LED管芯激发的白光发光二极管用高亮度蓝色荧光粉.  相似文献   

7.
The Dy‐ and Eu‐activated Ca3B2O6 phosphors were synthesized by a high‐temperature solid‐state reaction technique and their structural and luminescent properties were investigated. The phosphors are characterized by X‐ray diffraction, photoluminescence spectra, and Commission International de I'Eclairage (CIE) chromaticity coordinates. It is found that the charge compensator Na+ plays an important role in modifying the emission spectral profiles of Dy and Eu ions in the phosphors. The ratio of the emission located at the yellow wavelength portion to that located at the blue wavelength region of the Dy3+ ions can be apparently tuned by changing the Na+ content. The luminescence intensity of the phosphors can be enhanced with introducing Na+ ions as well. The emission colors of Dy/Eu codoped phosphors change from blue to white and successfully acquire the superior white light emission (x = 0.330, y = 0.329) by appropriately tuning the Na+/Dy3+ content and the excitation wavelength. The energy transfer process from Eu2+ to Dy3+ and Eu3+ occurs in the Dy/Eu codoped phosphors, providing a further approach to modify the emission spectral profile of the examined phosphors. The phosphors presented here have promising applications in the fields of light‐emitting diodes.  相似文献   

8.
《Ceramics International》2023,49(10):15320-15332
A variety of Bi3+ and/or Eu3+ doped KBaYSi2O7 phosphors with deep blue, cyan, orange-red, and white light multicolor emissions have been fabricated by a Pechini sol-gel (PSG) method. The KBaYSi2O7:Bi3+ phosphors exhibit an intense cyan emission or a unique narrow deep blue emission when excited by different wavelengths, which may bridge the cyan gap or act as a promising deep blue phosphor for white light-emitting diodes (WLEDs). The tunable multicolor emissions can be achieved by changing the Bi3+ doping concentrations. The Bi3+/Eu3+ co-doped KBaYSi2O7 phosphors display intrinsic emissions of Bi3+ and Eu3+ and an energy transfer process between Bi3+ and Eu3+ can be detected. The luminescence colors of KBaYSi2O7:Bi3+,Eu3+ regularly shift from blue, through cold and warm white, finally toward orange-red by adjusting the relative doping concentrations of Bi3+ and Eu3+. The single-phase white light-emitting material can be generated in both cold and warm white regions by simply varying the Eu3+ doping concentrations. Furthermore, three kinds of WLEDs devices are fabricated by KBaYSi2O7:Bi3+ or KBaYSi2O7:Bi3+,Eu3+ phosphors, which can exhibit dazzling white light emissions with eminent CIE coordinates, correlated color temperature, and color rendering index. The result offers direct evidence that the as-synthesized phosphors may be potentially applied in WLEDs and solid-state lighting.  相似文献   

9.
《Ceramics International》2023,49(10):15284-15294
A new glass series with nominal molar composition of 60B2O3 + 30NaF + 10Al2O3 co-doped with Dy3+ and Pr3+, synthesized by melt quench was reported. The influence of Rare Earth (RE) ratio variation on prepared glasses was investigated by using Fourier Transform Infra-Red spectroscopy, UV–Vis–NIR absorption spectroscopy, Photoluminescence, Decay curves and Density measurements. Their X-Ray Diffraction and FTIR spectra revealed the glassy nature and confirmed that AlO6, AlO4, BO3 and BO4 units are the main structural units of that matrix. A non-linear variation following the same trend for tetragonal borate units (N4), Band gap, non-linear optical properties, Density, Molar Volume etc. was observed. Different optical parameters were obtained by UV–Vis–NIR spectroscopy. The Bonding parameter obtained from Nephelauxetic study indicated ionic nature of Dy3+ and covalent nature of Pr3+ ions. Photoluminescence excitation and emission spectra were recorded under variety of excitation wavelengths and corresponding color parameters were calculated using 1931 CIE standards. A detailed yellow to blue ratio analysis was reported as a function of RE ion concentration and excitation wavelengths. Composition DPNAB(x = 0.7) displayed the best performance with CIE coordinates (0.33, 0.37). Existence of Energy transfer from Dy3+ and Pr3+ was evidenced by the spectral overlap diagram and lifetime values obtained from fitting of Decay curves. From the obtained results, prepared glasses can be suggested for solid-state lighting devices like WLEDs and display devices.  相似文献   

10.
LaScO3:xBi3+,yTb3+,zEu3+ (x = 0 − 0.04, y = 0 − 0.05, z = 0 − 0.05) phosphors were prepared via high-temperature solid-state reaction. Phase identification and crystal structures of the LaScO3:xBi3+,yTb3+,zEu3+ phosphors were investigated by X-ray diffraction (XRD). Crystal structure of phosphors was analyzed by Rietveld refinement and transmission electron microscopy (TEM). The luminescent performance of these trichromatic phosphors is investigated by diffuse reflection spectra and photoluminescence. The phenomenon of energy transfer from Bi3+ and Tb3+ to Eu3+ in LaScO3:xBi3+,yTb3+,zEu3+ phosphors was investigated. By changing the ratio of x, y, and z, trichromatic can be obtained in the LaScO3 host, including red, green, and blue emission with peak centered at 613, 544, and 428 nm, respectively. Therefore, two kinds of white light-emitting phosphors were obtained, LaScO3:0.02Bi3+,0.05Tb3+,zEu3+ and LaScO3:0.02Bi3+,0.03Eu3+,yTb3+. The energy transfer was characterized by decay times of the LaScO3:xBi3+, yTb3+, zEu3+ phosphors. Moreover absolute internal QY and CIE chromatic coordinates are shown. The potential optical thermometry application of LaScO3:Bi3+,Eu3+ was based on the temperature sensitivity of the fluorescence intensity ratio (FIR). The maximum Sa and Sr are 0.118 K−1 (at 473.15 K) and 0.795% K−1 (at 448.15 K), respectively. Hence, the LaScO3:Bi3+,Eu3+ phosphor is a good material for optical temperature sensing.  相似文献   

11.
Despite the transformative role in society, information storage materials remain vulnerable to the corrosion by water, oxygen and heat, while topological engineering of glass provides an attractive solution to this tricky problem. Here, a considerable discovery is reported that the doping of Pb2+ ions could greatly affect the luminescence behavior of SrAl2O4:Eu2+, Dy3+ borate glass, resulting in a controllable property between long persistent luminescence and photostimulated luminescence. Specifically, high concentration Pb doped samples featuring the deeper continuously distributed trap levels with 0.97–1.47 eV performed highly efficient photostimulated luminescence. In other words, the ultraviolet-visible photons could be “written” in the deeper traps and then “read out” under the stimulation of a 980 nm near-infrared laser. From the combined structural and luminescence characterizations, it was speculated that the deeper trap originated from the increase of oxygen vacancies at defect levels. The practical anti-counterfeiting application was successfully realized based on this material with superior photostimulated luminescence phenomenon, which rendered the SrAl2O4:Eu2+, Dy3+ borate glass shine in a new field such as anti-counterfeiting, yet as a promising candidate for information storage application.  相似文献   

12.
Ba3Tb(BO3)3:Eu3+的制备与发光性质   总被引:2,自引:1,他引:1  
采用高温固相法合成了Ba3Tb(BO3)3:Eu3+红色荧光粉,并研究了Ba3Tb(BO3)3:Eu3+的发光特性。Ba3Tb(BO3)3:Eu3+的激发光谱包含250nm~330nm和350nm~400nm的2个宽带,最大峰值位于383nm,可以被紫外-近紫外发光二极管(light-emitting diodes,LED)有效激发。Ba3Tb(BO3)3:Eu3+的发射谱显示出4组发射峰,其主发射峰位于620nm,对应Eu3+的5D0→7F2跃迁;Eu3+掺杂摩尔分数为2%时,Ba3Tb(BO3)3:Eu3+发光亮度最高。经分析发现Ba3Tb(BO3)3:Eu3+存在Tb3+→Eu3+的能量传递。  相似文献   

13.
《Ceramics International》2016,42(3):4306-4312
Ceramics that exhibit persistent luminescence are usually opaque, which limits their utility. In this work, a laser-sintering technique is employed to produce persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics that has enhanced translucency in the visible spectral range. In this technique, a CO2 laser was used as the main heating source for sintering with no atmosphere control employed. The ceramics sintered at a power density of 3.1 W/mm2 yielded homogeneous grain size distributions and transmittance up to 40% in the range of 600–800 nm. Upon sintering in air, the ceramics exhibited the characteristic green emission from the Eu2+ ion, corresponding to the 5d→4f transition (514 nm) and a weak emission from the Eu3+ ion at 614 nm, corresponding to the 5D07F2 transition. The valence of europium ions was further studied by the X-ray absorption spectroscopy in the XANES region and those details are reported herein.  相似文献   

14.
x at. % Er3+, 3 at. % Dy3+: CaF2 transparent ceramics (x=1-5) with good transparency were fabricated by hot-pressed sintering. The phase composition of nanoparticles and transparent ceramics, microstructure, in-line transmittance, upconversion spectra and lifetime of transparent ceramics, as well as energy transfer mechanism between Er3+ and Dy3+ were investigated. The mean grain sizes of nanoparticles decreased from 33.0 nm to 26.2 nm with the Er3+ doping concentration increasing from 1 to 5 at.%. The microstructure of ceramic samples presented nearly dense microstructure and EDS analysis indicated Er3+ and Dy3+ were uniformly incorporated into CaF2 lattice. Under 900 nm excitation, the emission intensity for 4F9/26H15/2 transition of Dy3+ decreased and for 4S3/24I15/2 transition of Er3+ increased, the lifetime for the 4F9/2 level of Dy3+ decreased while the 4F7/2 level of Er3+ increased with the raise of Er3+ doping concentration. The energy transfer mechanism was proved to be the dipole-dipole interaction. The upconversion luminescence color was tuned from orange through yellow to green by changing the Er3+/Dy3+ ratio. In addition, the Vickers hardness, fracture toughness, and the thermal conductivity of Er3+, Dy3+: CaF2 transparent ceramics were discussed. All the results showed the Dy3+ could be used as a sensitizer for Er3+: CaF2 transparent ceramic in the upconversion field.  相似文献   

15.
采用高温固相法合成新型CaeLasSi6O26:Eu红色荧光粉,利用X射线衍射、扫描电镜及荧光光谱对其进行了表征.结果表明:合成的Ca2LasSi6O26:Eu属于六角晶系,可被近紫外光(394 nm)和蓝光(464 nm)有效激发,发射峰值位于614 nm(对应于Eu3+的5D0→7F2跃迁),激发波长与目前广泛使用...  相似文献   

16.
For the fiber-based magneto-optical (MO) devices, like Faraday optical isolator, the target MO glasses are supposed to strike a balance among the following properties: high Verdet constant, chemical and physical stabilities, compatibility with the fiber drawing process, and the connectivity to the silica glass fiber networks. In this work, we report on the MO application of Tb2O3-Al2O3-SiO2-B2O3 (TASB) glasses as a derivative of the yttrium aluminum silicate (YAS) glass fiber systems which have been intensively studied for their huge potential in the context of all-fiber lasers. We found that MO properties of the obtained TASB glasses vary systematically with the B2O3 contents. The effects of B2O3 on the local glass structures and the valence state of Tb ions were clarified via nuclear magnetic resonance, electron spin resonance, X-ray photoemission spectroscopy, and Raman spectroscopy. B2O3 content in TASB glasses leads to a certain degree of depolymerization in glass network and most of Tb4+ ions from the raw material of Tb4O7 are reduced to Tb3+ ions even in air, resulting in an improved MO properties. Due to the relatively high Verdet constant (∼70 rad/T/m) and suitable rheology of the glass melt speculated from the thermal analysis, TASB glass system in this work is adaptable to stable fiber-based Faraday effect devices.  相似文献   

17.
为了探索稀土氧化物掺杂对硼硅酸盐玻璃化学稳定性的影响,利用熔融冷却法制备了掺杂Nd2O3、Gd2O3和Y2O3的ZnO-B2O3-SiO2系玻璃.在一定的条件下,对玻璃在去离子水、酸、碱液态侵蚀介质中的腐蚀行为进行了研究.利用扫描电镜和能谱分析对腐蚀后的玻璃样品表面形貌和成分变化进行了表征,对酸性侵蚀介质中出现的白色沉淀进行了X射线物性分析,同时利用电感耦合等离子光谱仪测定了去离子水中浸出离子的浓度.结果表明:该系统玻璃的化学稳定性顺序为:耐酸性<耐碱性<耐水性.稀土氧化物的添加降低了玻璃侵蚀过程中的质量损失,减轻了玻璃的腐蚀程度和抑制了各组分的浸出量.Y2O3、Gd2O3和Nd2O3的添加使得该玻璃在去离子水中钠离子的浸出量从148.703 μg/cm2分别降低到43.751,63.984和138.828 μg/cm2.Nd2O3、Gd2O3和Y2O3掺杂对硼硅酸盐玻璃化学稳定性的改善作用顺序为Y2O3> Gd2O3> Nd2O3.  相似文献   

18.
Glasses with ultra-wideband near-infrared emission and superior irradiation resistance are important for the potential applications in optical communications under harsh environments. Here, transparent 35La2O3-(65-x)Ga2O3-xTa2O5 (LGT) and Er3+/Tm3+/Pr3+ tri-doped LGT glasses are fabricated using the levitation method. LGT glasses exhibit a wide glass-formation region, low largest vibration energy, high refractive indices, and excellent mechanical properties. Additionally, Er3+/Tm3+/Pr3+ tri-doped LGT samples with varying Pr3+ contents are characterized by possessing good thermal stability (Tg>849°C), wide transparent optical window, strong radiation resistance, excellent compatibility between low wavelength dispersion (vd>31.2), and large refractive index (nd>2.048). By optimizing the doping content of Er3+, Tm3+, and Pr3+ in an appropriate ratio, the ultra-wideband near-infrared luminescence ranging from 1250 to 1640 nm (FWHM = 251 nm) has been acquired under 808 nm pumping. Furthermore, decay curves are measured to reveal the fluorescence dynamics, and then the related emission mechanism is elaborated systematically. Meanwhile, the effects of gamma irradiation doses on microstructure, transmittance spectra, and fluorescence characteristics are studied. This work may offer a valuable reference for doping optimization and new design strategy of multifunctional materials.  相似文献   

19.
Eu3+,Ce3+共掺硼硅酸锌玻璃的发光性能及能量传递   总被引:1,自引:0,他引:1  
柳召刚  闫淑君  王觅堂  李梅 《硅酸盐通报》2012,31(3):559-562,580
采用高温液相法制备了50ZnO-30SiO2-20B2O3∶Eu3+,Ce3+玻璃。测试了样品的激发光谱和发射光谱。结果表明:在紫外光激发下,该玻璃可以发出明亮的红色光。其中580 nm,593 nm,617 nm,655 nm和706 nm波长处的发射峰分别对应于Eu3+的5D0→7F0,5D0→7F1,5D0→7F2,5D0→7F3和5D0→7F4跃迁发射,其中5D0→7F2跃迁发射强度最大,同时发现在450 nm处存在Ce3+的5D→2FJ(J=7/2,5/2)特征发射峰。首次发现在该发光玻璃50ZnO-30SiO2-20B2O3∶Eu3+,Ce3+中存在着Ce3+→Eu3+能量传递现象,其中Ce3+起敏化作用。  相似文献   

20.
《Ceramics International》2016,42(11):13168-13175
Er3+/Yb3+ co-doped bioactive glasses were prepared via containerless processing in an aerodynamic levitation furnace. The as-prepared glasses were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive X-Ray spectroscopy (EDX). The up-conversion luminescence of as-prepared glasses was measured using an Omni- 3007 spectrometer. Furthermore, the in vitro bioactivity was evaluated by soaking the materials in simulated body fluid, and the biocompatibility was evaluated in MC3T3-E1 cell culture.The results show that containerless processing is a unique method to prepare homogeneous rare earth doped bioactive glasses. The obtained Er3+/Yb3+ co-doped glasses show green and red up-conversion luminescence at the excitation of 980 nm laser. The XRD analysis confirmed that calcium silicate powders, as starting materials, were completely transformed from the original multi-crystalline phase (CS-P) into the amorphous-glassy phase (CS-G, EYS, LCS) via containerless processing. The SEM observation combined with EDX and FTIR analyses showed that the as-prepared glasses were bioactive. The cell proliferation assay also revealed that the as-prepared glasses were biocompatible and nontoxic to MC3T3-E1 cells. This study suggests that the luminescent bioactive glasses prepared by containerless processing could be used for studying biodegradation of bone implantation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号