首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
利用2000—2015年MODIS气溶胶光学厚度产品,采用参数化方法反演得到了华东地区地面PM_(2.5)时空分布产品。从季节特征来看,PM_(2.5)表现出春夏低、秋冬高的特点。而PM_(2.5)年际变化呈现出从2000年开始稳定增加,2007年达到最高值,之后逐渐下降的趋势。这种年变化趋势不仅与区域污染物排放有密切关系,同时也与天气背景环流的年际尺度变化有很大关系。通过对不同季节的PM_(2.5)进行EOF分解,发现春季的年变化受极涡强度影响较大,夏季年变化主要受西太平洋台风数量、北半球副高脊线位置以及太平洋—北美遥相关型指数支配。秋季年变化与太阳黑子活动及亚洲区极涡面积关系密切。冬季年变化受冷空气影响次数和Ni?o A区(25°—35°N,130°—150°E)海表温度距平指数支配。各季节天气影响因子的组合效应能够很好地反应出区域PM_(2.5)的年变化特征,表明在全球气候变暖的背景下,中国东部环流形式的改变对PM_(2.5)区域分布的变化有着不容忽视的影响。  相似文献   

2.
夏季亚洲-太平洋涛动的耦合模式模拟   总被引:1,自引:0,他引:1  
亚洲-太平洋涛动是夏季欧亚大陆东部(15°—50°N,60°—120°E)与北太平洋上空(15°—50°N,180°—120°W)温度场反相变化的现象。亚洲-太平洋涛动指数由对流层上层(500—200 hPa)温度定义,反映了亚洲-太平洋纬向热力差异。基于一个全球海-气耦合模式FGOALS_gl的20世纪气候模拟试验结果,讨论了其对20世纪亚洲-太平洋涛动指数变化的模拟能力。结果表明,较之ERA-40再分析资料(1960—1999年),模式很好地刻画出上层温度场的平均态和主导模态的空间型。从趋势上看,模式对北太平洋上空温度的年代际变化和趋势模拟较好,但未能模拟出亚洲东部陆地上空的降温趋势。从频谱分析结果看,模拟的亚洲-太平洋涛动指数2—3,a的年际变率与再分析资料相当,5-7 a周期的变率较弱。模式能够较好地模拟出与亚洲-太平洋涛动指数相关的亚洲季风区气候异常。在20世纪模拟中,外强迫因子会改变耦合系统的年际变率,在自然因子强迫下亚洲-太平洋涛动指数的功率谱向低频方向增强,人为强迫因子的作用则相反。自然强迫因子和人为强迫因子在不同时期对亚洲-太平洋涛动年际和年代际变率的作用不同。在年际变率中人为强迫因子能够控制亚洲-太平洋涛动的变率使其不致过大;在年代际变率中人为强迫因子会增强自然强迫下亚洲-太平洋涛动的变率。模式上层温度的主导模态受ENSO调制,可能影响亚洲-太平洋涛动的年际变率。因此,模式对ENSO模拟能力的缺陷是制约模式对流层上层温度及亚洲-太平洋涛动指数变率的重要因素。  相似文献   

3.
2005年河南省秋季持续阴雨天气成因分析   总被引:2,自引:1,他引:1  
利用NcEP/NcAR 2.5°×2.5°日平均再分析资料和1°×1°资料及常规气象观测资料,分析了河南省2005年9月14日-10月3日长达18天(18日、22日间歇)的连阴雨天气成因.结果表明:200 hPa出现并且维持的高空急流,异常强大的南亚高压,偏西偏北的副热带高压,以及边界层的偏东风,是造成此次连阴雨天气的...  相似文献   

4.
利用常规观测资料和NCEP 2.5°×2.5°网格再分析资料,对2009年4月16日天山翻山大风的物理机制进行了诊断分析.结果表明:高空急流、垂直环流共同作用是高空动量下传的重要动力机制,500~850 hPa较深厚的强冷平流输送是翻山大风形成的热力因子.同时得到天山翻山大风一些有益的预报指标.  相似文献   

5.
冰雹是对流性天气常见的灾害之一,雷达是识别冰雹强有利的工具,为克服现有方法主观性强、特征量阈值不明确以及虚警率高的不足,探究机器学习算法用于冰雹识别的可行性,基于决策树算法利用2015年1月1日—2021年12月31日鄂东地区冰雹灾情资料、武汉多普勒天气雷达以及探空资料,将湿球温度高度引入冰雹识别因子中,并根据命中率、虚警率和临界成功指数定量评估其识别能力。结果表明:仅包含回波强度的决策树(强度决策树)和包含回波强度和湿球温度高度的决策树(强度-高度决策树)均能有效识别冰雹,强度-高度决策树较强度决策树的命中率和临界成功指数均小幅提高,且虚警率明显降低;强度决策树识别冰雹的关键因子为组合反射率因子,底层多为0.5°和1.5°仰角反射率因子,强度-高度决策树的关键因子为0.5°仰角反射率因子,底层多为风暴的整体强度属性;个例分析显示强度-高度决策树减少了湿球0℃层高度较高时的虚警次数,展现出良好的应用前景。  相似文献   

6.
利用局地经向环流对河南一次连阴雨过程的定量诊断   总被引:1,自引:1,他引:0  
孔海江 《气象》2014,40(12):1481-1490
利用2.5°×2.5°NCEP/NCAR再分析资料和改进的局地经向环流线性模式,定量诊断了2011年9月5—19日河南省秋季连阴雨天气的形成机理,并利用局地经向环流的垂直分量与降水量滞后相关的分析,研究了这次连阴雨过程主要物理因子的演变特征。结果表明:(1)潜热加热、平均经向温度平流、平均西风动量的纬向平流和平均纬向温度平流是导致2011年9月河南省秋季连阴雨天气形成的主要物理因子。(2)潜热加热和平均纬向温度平流是造成此次连阴雨发生的主要物理因子;平均纬向温度平流、平均经向温度平流和平均西风动量的纬向平流是造成此次连阴雨发展或持续的主要物理因子;潜热加热、平均西风动量的纬向平流和平均纬向温度平流是造成此次连阴雨结束的主要物理因子。  相似文献   

7.
交叉定标产生的NOAA卫星长期大气温度观测资料   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍一套用于气候变化研究的NOAA卫星微波观测资料, 资料为全球5 d平均, 2.5°×2.5°经纬网格, 3个深层大气(对流中层、对流层顶以及平流层下层)的温度分布。该文简介了资料产生的方法, 包括交叉定标、角度订正、网格化以及网格误差修正等, 给出了使用这套资料分析得到的1987—2006年间不同大气层的温度变化趋势, 并提供了获取这套资料的方法。  相似文献   

8.
华南暖区暴雨过程集合动力因子的诊断分析   总被引:1,自引:1,他引:0  
苏冉  廖菲  齐彦斌 《气象》2019,45(11):1517-1526
选取2015—2017年4—6月发生在广东地区的20个暖区暴雨个例,利用GFS0.5°×0.5°预报场资料,分析了集合动力因子在华南暖区暴雨中的分布特征。研究结果表明:(1)在广东省的四类主要暖区暴雨中,锋前低槽暴雨中各集合动力因子和累积降水的相关性最高,其次是西南急流暴雨,而回流暴雨中的相关性最差。锋前低槽暴雨与回流暴雨有共同的相关性较好的集合动力因子,高空槽和副热带急流暴雨与西南急流暴雨也有共同的相关性较好的集合动力因子。(2)选取各类暖区暴雨中对降水表征最好的集合动力因子分别构建了3个量级的权重指数(量级分别为10~(-3)、10~(-1)和10~2),发现各量级的权重指数随着降水量级的增大而增大,说明权重指数对分析判断不同量级的降水具有很好的指示作用。(3)采用各量级权重指数的中位数作为判断降水等级的阈值,并利用3个量级的权重指数可以综合判断降水的强度等级,这为降水的量级预报提供了一个客观化指标。这些结果进一步提高了集合动力因子在华南暖区暴雨预报中的实际应用能力。  相似文献   

9.
使用NCEP/NCAR再分析资料(2.5°×2.5°经纬网格)、micaps常规资料、自动站资料对广西2011年6月28-30日持续暴雨过程进行诊断分析.跟踪ECWMF、日本、德国、北京降水等多种模式预报产品,得出结论:低涡、切变线、西南风急流的共同配合影响造成了本次降水过程.高层辐散、低层辐合的流场结构提供了暴雨天气...  相似文献   

10.
杜小玲  彭芳  吴古会  杨静 《高原气象》2013,32(3):728-738
利用NCEP/NCAR 1°×1°和2.5°×2.5°再分析资料、FY—2E相当黑体亮温TBB资料和区域自动站逐时降水资料,结合新型辐散方程,对2010年6月28日贵州省关岭县一次特大暴雨天气的发生和维持机制进行了诊断分析。结果表明:(1)大气运动非平衡强迫使贵州西部地区出现辐合增长,激发了该区域暴雨天气的产生;(2)能量锋生与垂直风切变的耦合强迫,促进了贵州西部地区辐合的持续增长,使暴雨得以维持;(3)对流层中低层湿位涡水平分量与垂直涡度耦合,其负值中心与地面强降水中心相对应,随后中尺度对流复合体(MCC)云团北侧出现了新生单体,第二轮暴雨随即发生并维持。  相似文献   

11.
南半球环流异常与我国夏季旱涝分布关系及其影响机制   总被引:6,自引:0,他引:6  
利用1951—2000年NCEP/NCAR风场和高度场再分析资料及全国160站降水量资料, 采用奇异值分解、相关和合成分析方法, 研究6—8月南半球500 hPa高度、高低层纬向风距平差异常 (Δu850-Δu200) 与我国夏季旱涝分布的关系及其影响机制。结果表明:当500 hPa澳大利亚高压脊偏强及西南太平洋热带地区高低层纬向风距平差为负值时, 来自南半球冷空气活动偏弱, 有利于西北太平洋副热带高压位置偏南, 热带季风偏弱, 我国夏季雨带偏南。反之, 当澳大利亚高压脊偏弱及西南太平洋热带地区高低层纬向风距平差为正值时, 我国北方降水偏多。同时, 定义了澳大利亚冬季风指数, 指出澳大利亚冬季风强年和弱年影响我国夏季旱涝分布异常的水汽输送型式不同。  相似文献   

12.
基于1979—2020年逐日的NOAA向外长波辐射资料、NCEP/NCAR再分析风场资料,以及全球CMAP再分析降水资料,探讨了气候态亚洲热带夏季风涌的传播过程及与我国夏季相应的降水联系。分析结果表明,主汛期亚洲热带气候态夏季风季节内振荡(CISO)活动是亚洲夏季风活动的主要特征,随时间北传的亚洲热带夏季风CISO称为亚洲热带夏季风涌,主要有南亚夏季风涌和南海夏季风涌。亚洲热带夏季风涌的传播可分为四个阶段。在亚洲热带夏季风涌的发展阶段,印度洋区域低频气旋与对流活跃,孟加拉湾和南海热带区域被低频东风控制,我国大部分地区无降水发生,降水中心位于两广地区。当进入亚洲热带夏季风涌活跃阶段,孟加拉湾和南海热带地区低频气旋和对流活跃,东亚低频“PJ”波列显著,我国降水中心北移到长江以南的附近区域。亚洲热带夏季风涌减弱阶段,孟加拉湾与南海低频气旋消亡,对流减弱,低频西风加强,日本南部附近为低频反气旋控制,我国长江中下游低频南风活跃,降水中心也北移到长江中下游地区,而华南地区已基本无降水,此阶段的大气低频环流场与亚洲热带夏季风涌发展阶段基本相反。进入亚洲热带夏季风涌间歇阶段时,孟加拉湾和南海热带地区低...  相似文献   

13.
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China’s 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.  相似文献   

14.
利用T42L9全球大气环流谱模式进行数值试验 ,以揭示南海夏季风强度异常的特征及其影响。控制试验结果表明 ,该模式不仅能够很好地模拟出气候平均的西风带槽脊和高低空气流分布以及它们的季节性变化 ,而且对于与亚洲季风有关的各个主要系统 ,如南亚高压、副高进退及越赤道气流等都有较强的模拟能力。在亚洲季风区及热带太平洋这一大范围区域的大气内部热源异常强迫下 ,模式显示出了南海夏季风持续异常的特征、北半球热带外环流的响应以及亚洲季风区降水异常分布。南海夏季风长时间强度异常所引起的大气内部热源异常 ,一方面通过三维垂直环流的异常联结着南海夏季风对北半球热带内外环流的影响 ,另一方面它又通过持续异常期的波列传播 ,即能量的传播 ,不仅影响我国长江流域降水 ,还会逐渐影响到北半球中高纬环流结构。这样西风带环流形势将会发生相应的变化和调整 ,南海夏季风持续异常影响到了北半球大气环流和天气气候的变化。  相似文献   

15.
TheEfectofHeatingAnomalyontheAsianCirculation-AGCMExperiment①WangHuijun(王会军)LASG,InstituteofAtmosphericPhysics,ChineseAcademy...  相似文献   

16.
杨辉  陈隽  孙淑清 《大气科学》2005,29(3):396-408
利用海气耦合和大气气候模式研究东亚冬季风异常对夏季环流的影响, 结果表明, 东亚冬季风异常对于后期环流及海洋状态异常都起了很大的作用.一般情况下, 强的冬季风与后期弱的东亚夏季风和较强的南海季风相对应.与强(弱)冬季风异常相关的风应力的改变可以使热带太平洋海温从冬季至夏季呈现La Nina (El Nio)型异常分布.试验得到的由冬季风异常所产生的海洋及夏季环流的变化与实况是相当接近的.在异常的冬季风偏北风分量强迫下, 西太平洋上形成的偏差气旋环流在夏季已不存在, 这时东亚夏季风反而增强.而冬季赤道西风分量所产生的影响, 则在西太平洋上形成显著的偏差气旋环流, 使东亚副热带夏季风减弱, 南海夏季风加强.对于东亚大气环流而言, 与强弱冬季风对应的热带海洋海温异常强迫下, 不仅是冬季, 后期春季和夏季环流的特征都能得到很好的模拟.但是从分区看, 西太平洋暖池区的海温异常比东太平洋更为重要.单纯的热带中东太平洋的海温异常对东亚大气环流的影响主要表现在冬季, 对后期的影响并不十分清楚.整个热带海洋的异常型分布(不论是El Nio还是La Nia)型, 对冬夏季风的影响是重要的, 而单纯的某个地区的海温异常都比它的整体影响要小.从试验结果看, 海温在大尺度冬夏季环流的隔季相关中起了十分重要的作用.  相似文献   

17.
利用NCEP/NCAR再分析资料、Hadley中心海温资料及CMAP降水资料等,通过亚澳季风联合指数挑选异常年份,对东亚夏季风和澳洲冬季风强度反相变化特征进行研究。结果表明,当东亚夏季风偏强、澳洲冬季风偏弱时,南北半球中低纬地区都出现了复杂的异常环流系统。在热带地区对流层低层,西北太平洋为异常反气旋式环流系统所控制,与南太平洋赤道辐合带的异常反气旋环流在赤道地区发生耦合,形成赤道异常东风,而在南北印度洋上则存在两个异常气旋式环流系统。在这两对异常环流之间的海洋性大陆地区,出现赤道以南为反气旋环流而赤道以北为气旋式环流。在东亚季风区,东南沿海的东侧海洋上存在反气旋异常,中国东南地区受异常反气旋西南侧的东南风影响。此外,澳洲北部受异常西风影响。这就形成了东亚夏季风偏强、澳洲冬季风偏弱的情形,从而东亚夏季风和澳洲冬季风活动出现了强弱互补的变化特征。当东亚夏季风偏弱、澳洲冬季风偏强时,南北半球的环流特征则出现与上述相反的环流特征。总体而言,当东亚夏季风偏强、澳洲冬季风偏弱时,东亚—澳洲季风区在南北半球呈现出不同的气候异常分布特征,即北半球降水北少南多、气温北高南低,南半球降水西多东少、气温西高东低。  相似文献   

18.
关键区海温年代际异常对我国东部夏季降水影响   总被引:1,自引:1,他引:0       下载免费PDF全文
利用1931—2010年UKMO HADISST1全球月海表温度、NOAA再分析资料及我国东部96个站月降水量资料,使用REOF,SVD及合成分析等方法探讨了关键区冬季海表温度 (SST) 年代际异常对我国东部夏季降水的影响。结果表明:当冬季黑潮区SST年代际异常处于正位相时,夏季500 hPa中高纬度地区位势高度呈“+-+”距平分布,西风带经向环流盛行,西太平洋副热带高压加强、西伸;850 hPa风场距平场上,北方地区为反气旋性异常控制,南海上空为异常偏南气流,这样的环流配置有利于我国东部夏季多雨带出现在长江中下游地区;当冬季南印度洋偶极子 (SIOD) 年代际异常处于正位相时,夏季500 hPa中高纬度地区位势高度为正距平,阻塞形势发展,经向环流盛行,有利于冷空气南下,西太平洋副热带高压强度偏强,位置略偏南、偏西;850 hPa风场距平场上,北方地区为一反气旋性异常控制,异常偏北气流延伸至我国南方地区,索马里越赤道气流偏强。这种环流配置使得副热带锋区偏南,夏季多雨带位于华南及东南沿海地区。  相似文献   

19.
春季青藏高原大气热源与长江中下游盛夏高温的关系   总被引:1,自引:0,他引:1  
利用1961—2013年长江中下游地区盛夏(7—8月)日极端最高气温和NCEP/NCAR再分析逐日资料,分析了春季(4—5月)青藏高原大气热源特征,找到了影响长江中下游盛夏高温的热源关键区域,并就关键区大气热源对长江中下游盛夏高温的影响进行了诊断。结果表明:春季青藏高原主体中南部大气热源与长江中下游盛夏高温关系密切,当该区域大气热源偏弱(强),长江中下游盛夏高温日数偏多(少)的可能性大。当春季青藏高原关键区大气热源偏弱(强)时,春季南海到西太平洋暖池对流偏强(偏弱),南海上空为气旋性(反气旋性)异常环流,西太平洋副热带高压偏东(西),有利于南海夏季风爆发偏早(晚),往往有利于盛夏西太平洋副热带高压位置偏北(南),从而导致长江中下游盛夏高温日数偏多(偏少)。春季青藏高原关键区大气热源可以作为长江中下游盛夏高温的一个前期预报因子。  相似文献   

20.
    
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30–60 day low-frequency oscillation (LFO) exists in all of the above elements during the exper-iment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this paper. Analysis results reveal that: (1) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30–60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly af-fected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the Indian monsoon system. This means that the low-frequency circulation systems in Indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation sys-tem (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998. This work was supported by the key project A of the State Ministry of Science and Technology “South China Sea Monsoon Experiment” and the fruit of it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号