首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Electrical heating of food products provides rapid and uniform heating, resulting in less thermal damage to the product. The objective of this research was to examine the effects of ohmic heating on the stability of orange juice with comparison to conventional pasteurization. During storage at 4 degrees C, degradation curves of ascorbic acid followed a linear decrease pattern in both ohmic-heated and conventionally pasteurized orange juices. For five representative flavor compounds (decanal, octana, limonene, pinene, and myrcene), higher concentrations were measured during storage in the ohmic-heated orange juice than in conventionally pasteurized juice. Although residual pectin esterase activity remained negligible in both types of juices, particle size was lower in the ohmic-heated orange juice. The sensory shelf life was determined by using the Weibull-Hazard method. Although both thermal treatments prevented the growth of microorganisms for 105 days, the sensory shelf life of ohmic-treated orange juice was >100 days and was almost 2 times longer than that of conventionally pasteurized juice.  相似文献   

2.
Pectinesterase (PE) was extracted from orange juice and pulp with 1 M NaCl, desalted, and separated using capillary electrophoresis (CE) gel procedures (CE-SDS-CGE) and isoelectric focusing (CE-IEF). PE resolved as a single peak using noncoated fused silica columns with CE-SDS-CGE. CE-IEF separation of PE required acryloylaminoethoxyethanol-coated columns, which had limited stability. Thermal stability of PE extracts before and after heating at 75 degrees C for 30 min and at 95 degrees C for 5 min established heat labile and heat stabile fractions with identical PE migration times by CE-SDS-CGE or CE-IEF. Peak magnitude decreased to a constant value as heating time increased at 75 degrees C. Regression analysis of CE-SDS-CGE peak migration times of molecular weight (MW) standards estimated both heat labile and heat stable PE at MW approximately 36 900. Traditional SDS-PAGE gel separation of MW standards and active PE isolated by IEF allowed estimation of MW approximately 36 000. CE-SDS-CGE allowed presumptive, but not quantitative, detection of active PE in fresh juice.  相似文献   

3.
Phenolic compounds, vitamin C (L-ascorbic acid and L-dehydroascorbic acid), and antioxidant capacity were evaluated in orange juices manufactured by different techniques. Five processes at industrial scale (squeezing, mild pasteurization, standard pasteurization, concentration, and freezing) used in commercial orange juice manufacturing were studied. In addition, domestic squeezing (a hand processing technique) was compared with commercial squeezing (an industrial FMC single-strength extraction) to evaluate their influences on health components of orange juice. Whole orange juice was divided into soluble and cloud fractions after centrifugation. Total and individual phenolics were analyzed in both fractions by HPLC. Commercial squeezing extracted 22% more phenolics than hand squeezing. The freezing process caused a dramatic decrease in phenolics, whereas the concentration process caused a mild precipitation of these compounds to the juice cloud. In pulp, pasteurization led to degradation of several phenolic compounds, that is, caffeic acid derivatives, vicenin 2 (apigenin 6,8-di-C-glucoside), and narirutin (5,7,4'-trihydroxyflavanone-7-rutinoside) with losses of 34.5, 30.7, and 28%, respectively. Regarding vitamin C, orange juice produced by commercial squeezing contained 25% more of this compound than domestic squeezing. Mild and standard pasteurization slightly increased the total vitamin C content as the contribution from the orange solids parts, whereas concentration and freezing did not show significant changes. The content of L-ascorbic acid provided 77-96% of the total antioxidant capacity of orange juice. Mild pasteurization, standard pasteurization, concentration, and freezing did not affect the total antioxidant capacity of juice, but they did, however, in pulp, where it was reduced by 47%.  相似文献   

4.
Effects of sonication on the kinetics of orange juice quality parameters   总被引:2,自引:0,他引:2  
The effects of sonication on pH, degrees Brix, titratable acidity (TA), cloud, browning index, and color parameters ( L*, a*, and b*) of freshly squeezed orange juice samples were studied. Ultrasonic intensity (UI) levels of 8.61, 9.24, 10.16, 17.17, and 22.79 W/cm2 and treatment times of 0 (control), 2, 4, 6, 8, and 10 min were investigated. No significant changes in pH, degrees Brix, and TA ( p < 0.05) were found. Cloud value, browning index, and color parameters were significantly affected by ultrasonic intensity and treatment time. Changes in cloud value followed first-order kinetics, whereas browning index, L*, a*, and b* values followed zero-order kinetics. Reaction rate constants were linearly correlated ( R2 > 0.90) to ultrasonic intensity.  相似文献   

5.
Liquid chromatographic methodology for the characterization of orange juice   总被引:1,自引:0,他引:1  
Liquid chromatographic (LC) methodology potentially useful for the characterization of orange juice, with particular regard to detecting adulteration of orange juice by computer pattern recognition analysis, has been developed. After dilution with methanol the juice is extracted with hexane to remove the carotenoids, which are chromatographed on a C18 column with an acetonitrile-methanol-methylene chloride mobile phase and detection at 450 nm. Further extraction of the juice with methylene chloride isolates the methoxylated flavones, which are chromatographed by reverse phase LC with an acetonitrile-methanol-water mobile phase and detection at 280 nm. The flavanone glycosides remaining in solution are chromatographed on a C18 column with an acetonitrile-water mobile phase and detection at 280 nm. The precisions of the heights of the 32 LC peaks selected for pattern recognition analysis were determined from 5 replicate analyses of a single juice. Coefficients of variation of the replicates ranged from 0.3 to 4.5%, with an average of 2.1%. Adulteration of products with sodium benzoate-fortified pulpwash or grapefruit juice can be detected by this method. Pattern recognition analysis of the data obtained for 80 authentic and 19 adulterated orange juices showed that the method is potentially useful for distinguishing between authentic and adulterated products.  相似文献   

6.
Identification and aroma impact of norisoprenoids in orange juice   总被引:1,自引:0,他引:1  
Four norisoprenoids, alpha-ionone, beta-ionone, beta-cyclocitral, and beta-damascenone, along with their putative carotenoid precursors, were identified in Valencia orange juice using time-intensity GC-O, GC-MS, and photodiode array HPLC. alpha-Ionone and beta-cyclocitral are reported in orange juice for the first time. GC-O aroma peaks were categorized into seven groups with similar sensory qualities: citrus/minty, metallic/mushroom/geranium, roasted/cooked/meaty/spice, fatty/soapy/green, sulfury/solventy/medicine, floral, and sweet fruity. The four norisoprenoids contributed approximately 8% of the total aroma intensity and 78% of the total floral aroma category. The putative carotenoid norisoprenoid precursors, alpha- and beta-carotene, alpha- and beta-cryptoxanthin, and neoxanthin, were identified in the same orange juice using photodiode array HPLC retention times and spectral characteristics.  相似文献   

7.
The main goal of the present study is to develop an immunoanalytical method for the quality control of orange juice products. Peptides from various parts (juice, albedo, and flavedo) of citrus fruits (orange, mandarin, grapefruit, and lemon) were analyzed and isolated by SDS-PAGE. Antisera were developed in mice against the protein pool of orange juice and peel and tested by Western blot analysis. Using these antisera, some juice- and peel-specific peptides were detected. One of the antibodies in the antiserum developed against peel proteins recognized a single peel-specific peptide with a molecular mass of 28 kDa in 10000-fold dilution. It did not give any positive reactions against the sample prepared from the juice. The 24 and 27 kDa juice-specific peptides were isolated in electrophoretically pure form, and polyclonal antibodies were developed against them in mice. The anti-27 kDa antibody reacted with a 29 kDa protein in the peel sample, and it gave a positive reaction against the 27 kDa peptide of the juice. The antibodies developed in the course of the present work seem to be useful for determining the juice content in commercial citrus beverages and for evaluating the peel contamination in them.  相似文献   

8.
Freshly squeezed orange juice aroma is due to a complex mixture of volatile compounds as it lacks a specific character impact compound. Fresh hand-extracted juice is unstable, and thermal processing is required to reduce enzyme and microbial activity. Heating protocols range from the lightly heated not from concentrate, NFC, to the twice heated, reconstituted from concentrate, RFC, juices. Thermal processing profoundly effects aroma composition. Aroma volatiles are further altered by subsequent time-temperature storage conditions. Heating reduces levels of reactive aroma impact compounds such as neral and geranial, and creates off-flavors or their precursors from Maillard, Strecker, and acid catalyzed hydration reactions. Off-flavors such as 4-vinylguaiacol, p-cymene, and carvone are the products of chemical reactions. Other off-flavors such as butane-2,3-dione, guaiacol, and 2,6-dichlorophenol are indicators of microbial contaminations. Since most orange juice consumed worldwide is processed, the goal of this review is to summarize the widely scattered reports on orange juice aroma differences in the three major juice products and subsequent aroma changes due to packaging, storage, and microbial contamination with special emphasis on results from GC-O studies.  相似文献   

9.
A study of the anaerobic digestion of wastewater from the pressing of orange peel generated in orange juice production was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (37 degrees C). Prior to anaerobic treatment the raw wastewater was subjected to physicochemical treatment using aluminum sulfate as a flocculant and to pH reduction using a solution of sulfuric acid. The reactor was batch fed at COD loads of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 g of COD. The process was very stable for all of the loads studied, with mean pH and alkalinity values of 7.5 and 3220 mg of CaCO3/L, respectively. The anaerobic digestion of this substrate was found to follow a first-order kinetic model, from which the specific rate constants for methane production, K(G), were determined. The K(G) values decreased considerably from 0.0672 to 0.0078 L/(g h) when the COD load increased from 1.5 to 5.0 g of COD, indicating an inhibition phenomenon in the system studied. The proposed model predicted the behavior of the reactor very accurately, showing deviations of <5% between the experimental and theoretical values of methane production. The methane yield coefficient was found to be 295 mL of CH4 STP/g of COD removed, whereas the mean biodegradability of the substrate (TOC) was 88.2%. A first-order kinetic model for substrate (TOC) consumption allowed determination of the specific rate constants for substrate uptake, K(C), which also decreased with increasing loading, confirming the above-mentioned inhibition process. Finally, the evolution of the individual volatile fatty acid concentrations (acetic, C2; propionic, C3; butyric, C4; isobutyric, iC4; valeric, C5; isovaleric, iC5; and caproic, C6) with digestion time for all loads used was also studied. The main acids generated were acetic and propionic for all loads studied, facilitating the conversion into methane.  相似文献   

10.
Seven healthy females and six males consumed daily 256 mg of vitamin C, 271 mg of flavanones (mainly as glycosides), 6 mg of carotenoids (mainly xanthophylls and cryptoxanthins), and 0.16 mg of folate by incorporation of daily three times 236 mL of not from concentrate orange juice (OJ) into their habitual diet. At the end of 3 weeks, mean vitamin C, folate, carotenoid, and flavanone plasma concentrations increased significantly relative to baseline by 59% (p < 0.001), 46% (p = 0.018), and 22% (p < 0.001), and 8-fold (p = 0.045), respectively. Flavanones were excreted in urine 9-fold more at the end of the intervention (p = 0.01) but returned to baseline 2 days after study completion. After the 3 week intervention, plasma concentrations of vitamins A and E did not change. 8-Hydroxydeoxyguanosine in white blood cells declined by 16% (p = 0.38; n = 11), and in individuals with high baseline concentrations by 29% (p = 0.36; n = 7), respectively. Low-density lipoprotein (LDL)-/high-density lipoprotein (HDL)-cholesterol ratios decreased but cholesterol (HDL, LDL, total) and thiobarbituric acid reactive substance plasma concentrations did not change significantly. We conclude from this pilot study that OJ is an excellent food source to enhance circulating concentrations of valuable hydrophilic as well as lipophilic phytochemicals.  相似文献   

11.
Naringin/neohesperidin ratios can be used to differentiate orange juice which may contain added grapefruit juice from orange juice which may include juices from other naringin-containing cultivars. The naringin/neohesperidin ratios in juice vary from 14 to 83 in grapefruit (C. grandis) and from 1.3 to 2.5 in sour orange (C. aurantium) cultivars; the ratio is always less than 1 for the K-Early tangelo. Concentrations of both naringin and neohesperidin can be determined in orange juice by using a single liquid chromatographic isocratic reverse-phase system with a C-18 column. The detection limit for both compounds is 1 ppm with a linear working range to 500 ppm. Concentration relative standard deviations range from 0.47 to 1.06% for naringin and from 0.4 to 1.27% for neohesperidin. Naringin and neohesperidin recoveries ranged from 93 to 102% at concentrations of 5 and 50 ppm. Naringin values from blind duplicate samples of orange/grapefruit juice blends could be duplicated to +/- 3%.  相似文献   

12.
Freshly squeezed orange juice samples were ozonated with control variables of gas flow rate (0-0.25 L min (-1)), ozone concentration (0.6-10.0%w/w), and treatment time (0-10 min). Effects of ozone processing variables on orange juice quality parameters of pH, degrees Brix, titratable acidity (TA), cloud value, nonenzymatic browning (NEB), color values ( L*, a*, and b*), and ascorbic acid content were determined. No significant changes in pH, degrees Brix, TA, cloud value, and NEB ( p < 0.05) were found. L*, a*, and b* color values were significantly affected by gas flow rate, ozone concentration, and treatment time. The changes in lightness ( L*) values and total color difference (TCD) values were fitted well to zero-order kinetics, whereas a*, b*, and ascorbic acid degradation followed first-order kinetics. The rate constants for a*, b*, and TCD were linearly correlated with ozone concentration ( R (2) = 0.88-0.99), whereas the rate constants for L* and ascorbic acid were exponentially correlated ( R (2) = 0.94-0.98).  相似文献   

13.
A gas chromatographic (GC) method has been developed for the simultaneous quantitation of fatty acids and sterols in orange juice, using a bonded phase fused silica capillary column of intermediate polarity, splitless automatic injection, and flame ionization detection. Sample preparation has been simplified by using 1 g C-18 adsorbent in a disposable minicolumn to extract 2 mL orange juice. Methylation of fatty acids and silylation of the sterols were carried out in the eluted extract (low polarity lipid fraction). The method precision was 7%; recoveries ranged from 83 to 113%. The precision of the injection technique was 2%. Seven major fatty acids and 5 sterols in orange juice were quantitated by the GC method and identified by GC/mass spectrometry. Quantitative data for several orange juice samples indicated that the levels of the compounds of interest were in the 1.3-72.0 mg/L range. The results demonstrate that bonded phase fused silica capillary GC has great versatility and potential for the quantitative determination of fatty acids and sterols.  相似文献   

14.
In vitro availability of flavonoids and other phenolics in orange juice   总被引:4,自引:0,他引:4  
Hand-squeezed navel orange juice contains 839 mg/L phenolics, including flavanones, flavones, and hydroxycinnamic acid derivatives. The flavanones are the main phenolics in the soluble fraction (648.6 mg/L) and are also present in the cloud fraction (104.8 mg/L). During refrigerated storage of fresh juice (4 degrees C), 50% of the soluble flavanones precipitate and integrate into the cloud fraction. Commercial orange juices contain only 81-200 mg/L soluble flavanones (15-33%) and the content in the cloud is higher (206-644 mg/L) (62-85%), showing that during industrial processing and storage the soluble flavanones precipitate and are included in the cloud. An in vitro simulation of orange juice digestion shows that a serving of fresh orange juice (240 mL) provides 9.7 mg of soluble hesperidin (4'-methoxy-3',5,7-trihydroxyflavanone-7-rutinoside) and 4.7 mg of the C-glycosylflavone vicenin 2 (apigenin, 6,8-di-C-glucoside) for freshly squeezed orange juice, whereas pasteurized commercial juices provide 3.7 mg of soluble hesperidin and a higher amount of vicenin 2 (6.3 mg). This means that although orange juice is a very rich source of flavanones, only a limited quantity is soluble, and this might affect availability for absorption (11-36% of the soluble flavanones, depending on the juice). The flavanones precipitated in the cloud are not available for absorption and are partly transformed to the corresponding chalcones during the pancreatin-bile digestion.  相似文献   

15.
Fruit juices have very distinct organic acid profiles that can be used as fingerprints for establishing possible adulteration. Recently, our group developed and validated a capillary electrophoresis method using UV detection for determining citric, isocitric, tartaric, and malic acids in natural and commercial orange juices. Sample treatment consisted of only dilution and centrifugation or filtration. This method has been applied to evaluate these acids and their ratios in 63 samples of Navelina, the most common variety of Spanish oranges, over a three month period. This evaluation has been conducted to establish ranges of acid concentrations and to compare them with those found in commercial juices. The more reliable parameter, because of the lower variability in fresh samples, was found to be the citrate/isocitrate ratio with a value of 113 (RSD = 10%). Only one of nine ramdonly selected commercial juices presented values within the range of those of the population of just-pressed Navelina orange juice. Moreover, three of them had measurable tartrate values, which is not a natural component of orange juice, showing mixtures with cheaper fruits.  相似文献   

16.
17.
The carotenoid profile of orange juice is very complex, a common characteristic for citrus products in general. This fact, along with the inherent acidity of the product, which promotes the isomerization of some carotenoids, makes the correct identification of some of these pigments quite difficult. Thus, one of the carotenoids occurring in orange juice has been traditionally identified as isolutein, a term used to refer to lutein epoxide, although enough evidence to support that identification has not been given. In this study, the carotenoid previously identified as isolutein/lutein epoxide in orange juice has been isolated and identified as a 9 or 9'-cis isomer of antheraxanthin as a result of different tests. To support this identification, a mixture of geometrical isomers of lutein epoxide isolated from petals of dandelions was analyzed under the same conditions used for orange juice carotenoids to check that neither their retention times nor their spectroscopic features matched with those of the orange juice carotenoid now identified as a cis isomer of antheraxanthin.  相似文献   

18.
Several fresh orange juices, obtained from five different Citrus sinensis (L.) Osbeck varieties (three pigmented varieties, Moro, Sanguinello, and Tarocco, and two blond varieties, Valencia late and Washington navel), were subjected to antioxidant profile determination (including total polyphenols, flavanones, anthocyanins, hydroxycinnamic acids, and ascorbic acid). The antioxidant activity of these juices was then assessed by means of different "in vitro" tests (bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical; peroxidation, induced by the water-soluble radical initiator 2,2'-azobis(2-amidinopropane) hydrochloride, on mixed dipalmitoylphosphatidylcholine/linoleic acid unilamellar vesicles; scavenging activity against nitric oxide; total antioxidant status). All orange juices tested showed an evident antioxidant effect. Our findings indicate the following: (1) the antioxidant efficiency of orange juices may be attributed, in a significant part at least, to their content of total phenols, (2) while ascorbic acid seems to play a minor role; (3) the antioxidant activity of orange juices is related not only to structural features of phytochemicals contained in them, but also to their capability to interact with biomembranes; (4) finally, as to pigmented juices, their antioxidant efficiency appears to be widely influenced by the anthocyanin level. One could speculate that the supply of natural antioxidant phenols through daily consumption of orange juice might provide additional protection against in vivo oxidation of cellular biomolecules.  相似文献   

19.
Effects of pulsed electric fields (PEF) at 35 kV/cm for 59 micros on the quality of orange juice were investigated and compared with those of heat pasteurization at 94.6 degrees C for 30 s. The PEF treatment prevented the growth of microorganisms at 4, 22, and 37 degrees C for 112 days and inactivated 88% of pectin methyl esterase (PME) activity. The PEF-treated orange juice retained greater amounts of vitamin C and the five representative flavor compounds than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0.05). The PEF-treated orange juice had lower browning index, higher whiteness (L), and higher hue angle (theta) values than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0. 05). The PEF-treated orange juice had a smaller particle size than the heat-pasteurized orange juice (p < 0.05). degrees Brix and pH values were not significantly affected by processing methods (p > 0. 05).  相似文献   

20.
Orange juice is a source of antioxidants that might afford in vivo protection from oxidative stress. To test this hypothesis, we carried out a human intervention study with blood orange juice containing high amounts of vitamin C, anthocyanins, and carotenoids. Sixteen healthy female volunteers were enrolled in a crossover study and were given 600 mL/day of blood orange juice or a diet without juice for 21 days. Before and after each intervention period, plasma vitamin C, cyanidin-3-glucoside, and carotenoids were quantified. Furthermore, plasma antioxidant capacity, malondialdehyde concentration in plasma, 11-dehydrotromboxane B(2) urinary excretion, and lymphocyte DNA damage were evaluated as biomarkers of oxidative stress. Blood orange juice consumption determined a significant increase in plasma vitamin C, cyanidin-3-glucoside, beta-cryptoxanthin, and zeaxanthin. Also, lymphocyte DNA resistance to oxidative stress was improved whereas no effect was observed on the other markers that we analyzed. In turn, these results suggest that blood orange juice is a bioavailable source of antioxidants, which might moderately improve the antioxidant defense system; however, the long-term effects of its consumption are to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号