首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
储召华  郝桂霞 《中国陶瓷》2012,(7):27-29,38
以燃烧法合成了CaAl2O4∶Eu2+,Nd3+,RE3+紫色长余辉发光材料。实验结果表明,掺杂辅助激活剂Pr3+和Ce3+对CaAl2O4∶Eu2+,Nd3+磷光体发光性能有明显影响。掺杂Pr3+的CaAl2O4∶Eu2+,Nd3+样品的发射峰蓝移;掺杂Ce3+的CaAl2O4∶Eu2+,Nd3+样品的发射峰红移。Pr3+或Ce3+掺杂,可以提高CaAl2O4∶Eu2+,Nd3+磷光体的初始亮度,Pr3+或Ce3+在其中起到增加陷阱密度,提高发光亮度的作用。  相似文献   

2.
用高温固相法成功制备了Gd2-xMo3O9:Eux3+,用XRD荧光光谱仪对其物相以及粉体的激发和发射光谱进行表征和研究;结果表明:在395和464nm两主激发峰均可得到616nm处红光发射峰,属于Eu3+典型的5D0→7F2的跃迁所致。由464nm激发得到的发射峰为单峰,峰宽较窄且发射强度较强。  相似文献   

3.
李艳红  张星傲  马晶 《硅酸盐学报》2014,42(10):1293-1298
采用聚乙烯吡咯烷酮(PVP)辅助水热法合成了GdF3∶Eu3+和NaGdF4∶Eu3+发光粉。利用X射线衍射(XRD)、扫描电子显微镜和荧光光谱对样品的结构、形貌和发光性能进行了研究。XRD分析表明:GdF3晶相到NaGdF4晶相的转换可以通过改变初始溶液pH值、PVP加入量和NaF与稀土离子(Gd3+和Eu3+)摩尔配比等合成条件实现。NaGdF4∶Eu3+发光粉的形貌受合成条件的影响。荧光光谱研究表明:GdF3∶Eu3+发光粉主发射峰位于593nm处,来自于Eu3+的5 D0→7 F1磁偶极跃迁;NaGdF4∶Eu3+发光粉主发射峰位于616nm,来自于Eu3+的5 D0→7 F2电偶极跃迁。2个样品中Gd3+与Eu3+离子之间存在较好的能量传递,而NaGdF4晶格更有利于2种离子的能量传递。  相似文献   

4.
以ZrOCl2·8H2O、EuCl3·6H2O和NaOH为原料,采用机械化学法制备ZrO2∶Eu3+发光粉体。采用透射电镜、X射线衍射仪和荧光光谱仪对其微观形貌、物相和发光特征进行表征。结果表明:ZrO2∶Eu3+发光粉体为分散均匀,粒径约为10nm的纳米晶。主晶相为t-ZrO2,随着煅烧温度的升高,出现少量m-ZrO2。发射光谱为Eu3+在604nm和595nm处的特征发射,分别对应5D0→7F2和5D0→7F1跃迁。m-ZrO2出现导致ZrO2∶Eu3+对称性的下降,在610nm处出现发射峰。Eu3+掺杂量为8mol%时达到最大发光强度。  相似文献   

5.
本文采用柠檬酸凝胶燃烧法合成了性能优良的Nd3+,Yb3+:Y2O3多晶原料。XRD、IR和SEM测试结果表明样品在900℃煅烧可获得纯相的Nd3+,Yb3+:Y2O3,平均粒径约为40 nm;TG-DTA测试结果表明样品在30~600℃之间失重约为49.28%;从荧光光谱上可以看出两个主要发射峰位于970~1100 nm之间,最强发射峰位于1030nm,对应Yb3+的2F5/2→2F7/2能级跃迁。  相似文献   

6.
杨志平  韩月  宋延春  赵青  潘飞 《硅酸盐学报》2012,40(11):1631-1635
采用高温固相法制备了适合于近紫外、蓝光激发的Sr2–xZnMoO6:xEu3+红色荧光粉。研究了Eu3+掺杂量对样品发光性能的影响。XRD谱显示合成样品为纯相Sr2ZnMoO6晶体。激发光谱由一系列尖峰和电荷迁移带组成,主激发峰位于395nm和465nm处,对应于Eu3+的7F0→5L6和7F0→5D2跃迁。在395nm和466nm激发下,主发射峰分别位于597nm和624nm,对应Eu3+的5D0→7F1和5D0→7F2跃迁。随着Eu3+掺杂量的增加,发射光谱强度先增大后减小,Eu3+最佳掺杂量为0.2。研究了分别以Cl–、Li+、Na+和K+作为电荷补偿剂对发光性能的影响,结果显示Li+补偿效果最为显著。  相似文献   

7.
采用固相微波法研究了助熔剂对MgAl2O4∶ Eu3+荧光粉发光性能的影响.利用XRD和荧光光谱仪对合成产物的物相和发光光谱进行研究,分别探讨了助熔剂的类型及含量对发光性能影响.结果表明,加入NaF,CaF2,B2O3和GeO2为助熔剂时可得到红色发光材料;MgAl2O4∶Eu3+荧光粉主发射峰位于612 nm处,对应Eu3+的5D0→7 F2电偶极跃迁,次强发射峰位于589 nm处,为Eu3+的5D0→7F0的跃迁,Eu3+离子处于非对称中心格位.相对于氟化物,氧化物助熔剂有助于提高样品的发光强度,其中,以B2O3为助熔剂时荧光粉的发光强度最高,其最佳掺杂量为4.5wt%.  相似文献   

8.
以尿素为燃料,采用溶液燃烧法合成出M2P2O7:Eu3+(M=Ba,Sr,Ca)红色荧光粉。利用X射线衍射和荧光光谱研究了激活剂Eu3+对3种荧光粉晶体结构和发光性能的影响。结果表明,制得样品分别为纯相的六方晶系Ba2P2O7、正交晶系Sr2P2O7和四方晶系Ca2P2O7。光谱分析表明,M2P2O7:Eu3+(M=Ba,Sr,Ca)的激发峰位置和发射峰位置均基本相同。M1.95P2O7:0.05Eu3+(M=Ba,Ca)发射红光,其对应于5D0→7F2电偶极跃迁的612nm发射峰强度高于对应于5D0→7F1磁偶极跃迁的588nm和593nm发射峰,说明Eu3+在M2P2O7(M=Ba,Ca)基质中处于非对称格位;而Sr1.95P2O7:0.05Eu3+发射橙红光,Eu3+在Sr2P2O7基质中处于对称格位。在394nm激发下,M1.95P2O7:0.05Eu3+(M=Ba,Sr,Ca)的色度坐标分别为(0.35,0.21)、(0.24,0.15)、(0.35,0.21)。这3种荧光粉均能被394 nm紫外光和464 nm蓝光有效激发,发射红光或橙红光。  相似文献   

9.
王飞  陈慧慧 《硅酸盐通报》2016,35(12):3998-4004
采用高温固相法制备了红色荧光粉Ca0.97Al2Si2O8∶ Eu0.033+,Li0.03+,研究了预压压力对其的晶体结构和发光性质的影响.XRD图谱显示,合成的试样均为纯相的CaAl2Si2O8晶体,三斜晶系,空间群为P-1.随着预压压力的增大时,各试样衍射图谱的各衍射峰的强度均有一定程度的增强,其中衍射最强峰(004)强度呈线性递增,斜率为15.9286,试样的晶胞参数a,b,c逐渐减小.在614 nm波长的监控下,收集到位于220~ 580 nm范围的激发光谱,该激发光谱由220~340 nm宽激发带和一组锐线峰构成,激发光谱中的最强峰为394 nm(7 F0→5 L6),其次为462 nm(7F0→5 D2);预压压力改变对7 F0→5L6影响较大.用394 nm激发Eu3+ (5L6)得到发射光谱,光谱中的锐线峰580am,594 nm,614 nm,655 nm,和705 nm归属于Eu3+的5D0→7FJ(J =0,1,2,3,4)的跃迁;预压压力在0~4 MPa范围内,预压压力对CaAl2Si2O8基质中的Eu3+的电偶极跃迁5D0→7F2影响较大.预压压力4 MPa试样激发和发射光谱强度相比于预压压力0 MPa试样分别增强52.52%,65.80%.荧光粉Ca0.97Al2Si2O8∶Eu0.033+,Li0.03+的色坐标a和色温均随着预压压力的增加而逐渐增加,分别增加0.0089,778 K,各试样的色坐标在(0.624,0.374)左右,色温约为4000K.  相似文献   

10.
采用固相法制备了LiBaBO3:Eu3+材料,并研究它的发光特性。LiBaBO3:Eu3+材料的主发射峰位于594、613、651nm和686nm,分别对应Eu3+的5D0→7F1、5D0→7F2、5D0→7F3和5D0→7F4跃迁;监测613nm发射峰,对应的激发光谱主峰为260、329、368、400nm和470nm。研究了Eu3+含量对LiBaBO3:Eu3+材料发射强度的影响,结果表明:随Eu3+含量的增大,发射强度先增大后减小,Eu3+摩尔分数为3%时,发射强度最大,依据Dexter理论知浓度猝灭机理为偶极-偶极相互作用。掺入电荷补偿剂Li+、Na+和K+均提高了LiBaBO3:Eu3+材料的发射强度。  相似文献   

11.
用于白光LED的Sr_3SiO_5:Eu~(3+)材料制备及发光特性(英文)   总被引:1,自引:1,他引:1  
采用高温固相法制备了Sr3SiO5:Eu3+材料.测量了Sr3SiO5:Eu3+材料的激发与发射光谱:材料的发射光谱由576、585、611、618nm和650nm几个发射峰组成,分别对应于Eu3+的5D0→7F0、5D0→7F1、5D0→7F2、5D0→7F2和5D0→7F3辐射跃迁.监测618 nm主发射峰时所得激发光谱为一多峰宽谱,主峰分别为400nul和470nm.研究了Eu"浓度对Sr3Si05:Eu3'材料发光强度的影响,结果显示:随Etl3'浓度的增大,发光强度先增大后减小,Eu3+的摩尔分数为3%时,材料的发光强度最大,根据Dexter理论,其浓度猝灭机理为电偶极一偶极跃迁.引入电荷补偿剂Cl-、Li+、Na+和K+时,材料的发光强度均得到了提高,其中Cl-和Li+的提高幅度较明显.  相似文献   

12.
用溶胶凝胶法制备了一系列不同掺杂浓度的Y3Al5O1 2(YAG):Tb3+,Ce3+荧光粉,对其物相、光学性能和能量传递进行了研究.多晶粉末X-射线衍射结果表明,所有样品均为YAG晶相,没有其它杂相.当样品在Tb3+的特征激发峰273 nm激发时,除了Tb3+的特征发射外,还观察到位于467 nm的YAG基质的电荷迁...  相似文献   

13.
采用合成的Eu-NTA和对二氨基联苯(ODA)为单体,亚磷酸三苯酯(TPP)和吡啶(Py)为浓缩剂,用溶液聚合的方法制备出具有荧光性能的聚合物Eu-NTA-co-ODA。对所合成聚合物利用红外光谱、溶解性能测试、XRD、紫外光谱与荧光光谱等手段进行了表征。通过红外光谱分析表明,聚合物Eu-NTA-co-ODA成功合成,Eu3+与聚合物体系中羰基发生了作用。通过荧光光谱分析表明Eu-NTA-co-ODA与Eu-NTA的荧光谱带的位置和形状基本相同,都反映了Eu3+的特征发射,位于592nm处的荧光发射为Eu3+的5D0→7F1磁偶极跃迁峰,出现在618nm处的跃迁为Eu3+的5D0→7F2电偶极跃迁峰,强度高于磁偶极跃迁峰,表现出红色荧光。  相似文献   

14.
采用溶胶-凝胶法合成了γ-LiAlO2:Eu3+红色荧光粉,用X射线衍射、扫描电子电镜、荧光光度计对样品进行了结构、形貌及发光性能表征。结果表明:Eu3+最佳掺杂量以摩尔计为2%,样品γ-LiAlO2:2%Eu3+为四方晶系结构,样品平均粒径为1μm左右,呈片状。荧光体的最大激发峰λex=254nm,属于宽带激发,最大发射峰λem=613nm,对应于Eu3+离子的5D0→7F2跃迁。Eu3+在LiAlO2晶格中主要占据非对称中心格位。  相似文献   

15.
采用水热法合成了Dy3+和Eu3+共掺杂的NaY(WO4)2上转换荧光粉,用XRD, SEM和荧光光谱(PL)等方法对不同干燥方式所得样品的晶体结构、微观形貌、晶粒尺寸及上转换发光性能进行了分析。结果表明,合成样品均为四方白钨矿结构的NaY(WO4)2,空间群为I41/a,掺入Dy3+和Eu3+未改变基质晶格;常规干燥、喷雾干燥、冷冻干燥及真空干燥后荧光粉的尺寸分别为817.91, 486.04, 388.74和349.82 nm,真空干燥的样品分散性最好。在793 nm近红外光激发下,冷冻干燥样品的上转换发光性能最佳,与干燥过程中粉体团聚程度减弱及表面层缺陷减少有关。576 nm处的黄光发射峰来自Dy3+的4F9/2→6H13/2跃迁,595 nm处的橙光、616和655 nm处的红光发射峰分别归属于Eu3+的5D0→7F1, 5D0→7F2和5D0→7F3跃迁。荧光粉的CIE色坐标均位于红光区,表现出良好的红光发射特性,在发光二极管和彩色显示等光电领域具有潜在应用价值。  相似文献   

16.
李桂芳  曹全喜  李智敏  黄云霞  卫云鸽 《硅酸盐学报》2012,40(4):562-563,564,565,566
采用凝胶–燃烧法合成了掺Eu3+的Y3Al5O12(YAG:Eu3+)荧光粉。分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)、发光光谱等测试手段分析了不同温度下煅烧所得粉体的物相、形貌与发光性质。XRD和SEM结果表明:YAG:Eu3+的最低合成温度为900℃,并且在该反应过程中没有中间相YAP(YAlO3)和YAM(YAl)的产生。1 100℃合成的晶粒尺寸比较均匀,平均粒径在90 nm左右。发光光谱的测试表明:在592 nm监控下的真空紫外激发光谱由峰值位于147、156、169nm和214nm的系列激发带组成,其分别归属于铝酸根的基质吸收以及Y3+和Eu3+的电荷迁移带吸收。在147nm激发下YAG:Eu3+荧光粉最强发射峰位于592nm处,属于Eu3+的5D0→7F1跃迁。Eu3+在基质中的最佳掺杂摩尔分数为4%。  相似文献   

17.
用高温固相法合成了颜色可调的SrMoO4:xEu3+,yTb3+荧光粉,并对其发光粉结构及其发光特性进行了研究。结果表明,SrMoO4:xEu3+,yTb3+荧光粉属于四方结构。Eu3+离子在SrMoO4晶体中形成峰值为617 nm的5d→4f跃迁发光,Tb3+离子的5 D4→7 F5跃迁产生548 nm的绿光发射。两个发射带的激发光谱范围位于250~450 nm处,SrMoO4:xEu3+,yTb3+在紫外、近紫外波段内有很强的激发,是一种适合InGaN芯片激发的白光LED用荧光粉。  相似文献   

18.
分别采用化学沉淀法、微波法、水热法制备了SrMoO4:0.05Eu3+,0.05Gd3+荧光粉,并通过X-射线粉末衍射(XRD)、荧光光谱和扫描电子显微镜(SEM)对其晶体结构、荧光光谱和形貌进行了表征。结果表明:SrMoO4:0.05Eu3+,0.05Gd3+的结构属体心四方晶系;其宽激发带由Eu3+-O2-、Gd3+-O2-电荷迁移带和Mo6+-O2-基质吸收峰组成,荧光发光以在616nm处Eu3+的5 D0→7 F2跃迁引起的红光发光最强;254nm紫外光激发时,化学沉淀法制备SrMoO4:0.05Eu3+,0.05Gd3+的发光峰比SrMoO4:0.05Eu3+的相应发光峰强度增大,这是由于Gd3+向Eu3+的能量传递敏化增强了Eu3+的发光。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号