首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study compared lactic acid resistance of individual strains of wild-type and rifampicin-resistant non-O157 Shiga toxin-producing Escherichia coli (STEC) and of susceptible and multidrug-resistant (MDR) and/or MDR with acquired ampC gene (MDR-AmpC) Salmonella against E. coli O157:H7. After inoculation of sterile 10% beef homogenate, lactic acid was added to a target concentration of 5%. Before acid addition (control), after acid addition (within 2 s, i.e. time-0), and 2, 4, 6 and 8 min after addition of acid, aliquots were removed, neutralized, and analyzed for survivors. Of wild-type and of rifampicin-resistant non-O157 STEC strains, irrespective of serogroup, 85.7% (30 out of 35 strains) and 82.9% (29 out of 35 strains), respectively, reached the detection limit within 0–6 min. Of Salmonella strains, 87.9% (29 out of 33 isolates) reached the detection limit within 0–4 min, irrespective of antibiotic resistance phenotype. Analysis of non-log-linear microbial survivor curves indicated that non-O157 STEC serogroups and MDR and susceptible Salmonella strains required less time for 4D-reduction compared to E. coli O157:H7. Overall, for nearly all strains and time intervals, individual strains of wild-type and rifampicin-resistant non-O157 STEC and Salmonella were less (P < 0.05) acid tolerant than E. coli O157:H7.  相似文献   

2.
This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤ 1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤ 4.5 and ≤ 3.9 log CFU/g. Log reductions of ≤ 4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.  相似文献   

3.
Meat and meat products have been implicated in outbreaks of Escherichia coli O157:H7 in most parts of the world. In the Amathole District Municipality of the Eastern Cape Province of South Africa, a large number of households consume meat and meat products daily, although the microbiological quality of these types of food is questionable. The present study investigated the prevalence of E. coli O157:H7 isolated from selected meat and meat products (45 samples each of biltong, cold meat, mincemeat, and polony) sold in this area. Strains of E. coli O157:H7 were isolated by enrichment culture and confirmed by polymerase chain reaction (PCR). Also investigated were the antibiogram profiles of the E. coli O157:H7 isolates. Five (2.8%) out of 180 meat and meat products examined were positive for E. coli O157:H7 that carried the fliCH7, rfbEO157, and eaeA genes. Two of the E. coli O157:H7 isolates were resistant against all the eight antibiotics tested. To prevent E. coli O157:H7 infections, meat and meat products such as biltong, cold meat, mincemeat and polony should be properly handled, and packed in sterile polyvinyl wrappers.  相似文献   

4.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

5.
Microbial cross-contamination either at home or production site is one of the major factors of causing contamination of foods and leading to the foodborne illness. The knowledge regarding Escherichia coli O157:H7 surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing different RTE products are needed to ensure RTE food safety. The objectives of this study were to investigate and to model the surface cross-contamination of E. coli O157:H7 during slicing operation. A five-strain cocktail of E. coli O157:H7 was inoculated directly onto a slicer's round blade rim area at an initial level of ca. 4, 5, 6, 7 or 8 log CFU/blade (ca. 3, 4, 5, 6 or 7 log CFU/cm2 of the blade edge area), and then the RTE deli meat (ham) was sliced to a thickness of 1–2 mm. For another cross-contamination scenario, a clean blade was initially used to slice ham which was pre-surface-inoculated with E. coli O157:H7 (ca. 4, 5, 6, 7 or 8 log CFU/100 cm2 area), then, followed by slicing un-inoculated ham. Results showed that the developed empirical models were reasonably accurate in describing the transfer trend/pattern of E. coli O157:H7 between the blade and ham slices when the total inoculum level was ≥5 log CFU on the ham or blade. With an initial inoculum level at ≤4 log CFU, the experimental data showed a rather random microbial surface transfer pattern. The models, i.e., a power equation for direct-blade-surface-inoculation, and an exponential equation for ham-surface-inoculation are microbial load and sequential slice index dependent. The surface cross-contamination prediction of E. coli O157:H7 for sliced deli meat (ham) using the developed models were demonstrated. The empirical models may provide a useful tool in developing the RTE meat risk assessment.  相似文献   

6.
Alfalfa sprouts contaminated with Salmonella and Escherichia coli O157:H7 have been implicated in several outbreaks of foodborne illnesses in recent years. The seed used for sprouting appears to be the primary source of pathogens. Seed decontamination prior to sprouting presents a unique challenge for the sprouting industry since cells of the pathogenic survivors although undetectable after sanitizing treatments, can potentially multiply back to hazardous levels. The focus of this study was to therefore test the efficacy of high hydrostatic pressure to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Pressure treatment of 600 MPa for up to 25 min at 20 °C could not result in complete inactivation of Salmonella. High-pressure treatment was then carried out either at sub-ambient (4 °C) or elevated (40, 45 and 50 °C) temperatures to test the ability of high pressure to eliminate Salmonella. Pressure treatment at 4 and 20 °C did not deliver any satisfactory inactivation of Salmonella while high pressure at elevated temperatures achieved complete kill. Pre-soaking seeds prior to high-pressure treatment also enhanced pressure inactivation of Salmonella but at the expense of seed viability. High-pressure treatment of 500 MPa for 2 min at 45 °C was able to eliminate wild-type Salmonella and E. coli O157:H7 strains without bringing about any appreciable decrease in the seed viability.  相似文献   

7.
Salmonella remains the primary cause of reported bacterial food borne disease outbreaks in Belgium. Pork and pork products are recognized as one of the major sources of human salmonellosis. In contrast with the primary production and slaughterhouse phases of the pork meat production chain, only a few studies have focussed on the post-harvest stages. The goal of this study was to evaluate Salmonella and Escherichia coli contamination at the Belgian post-harvest stages. E. coli counts were estimated in order to evaluate the levels of faecal contamination. The results of bacteriological analysis from seven cutting plants, four meat-mincing plants and the four largest Belgian retailers were collected from official and self-monitoring controls. The prevalence of Salmonella in the cutting plants and meat-mincing plants ranged from 0% to 50%. The most frequently isolated serotype was Salmonella typhimurium. The prevalence in minced meat at retail level ranged from 0.3% to 4.3%. The levels of Salmonella contamination estimated from semi-quantitative analysis of data relating to carcasses, cuts of meat and minced meat were equal to −3.40 ± 2.04 log CFU/cm2, −2.64 ± 1.76 log CFU/g and −2.35 ± 1.09 log CFU/g, respectively. The E. coli results in meat cuts and minced meat ranged from 0.21 ± 0.50 to 1.23 ± 0.89 log CFU/g and from 1.33 ± 0.58 to 2.78 ± 0.43 log CFU/g, respectively. The results showed that faecal contamination still needs to be reduced, especially in specific individual plants.  相似文献   

8.
Bison meat is a relatively new, emerging meat species gaining increased popularity in the US and European meat markets, but little is known of its microflora or pathogens that may be present. This study was carried out to determine the incidence of the foodborne pathogens Listeria, Salmonella, Escherichia coli/E. coli O157:H7 on slaughtered bison and to evaluate the bison slaughter process. Bison carcass sampling was carried out at monthly intervals over a period of 1 year at a Bison processing facility in the Midwestern United States. A total of 355 Bison carcasses were sampled by surface swabbing the carcasses at five points on the production line: pre-dehiding, post-evisceration, post-USDA inspection, post-washing and 24 h chilled carcass. Overall, the prevalence of Listeria spp., Salmonella spp., E. coli and E. coli O157:H7 was 18.3%, 3.94%, 38.3% and 1.13%, respectively. The prevalence of Listeria spp. at each sampling point tested was 42.24%, 18.1%, 6.03%, 1.72% and 3.77% while the prevalence of E. coli at each sampling point was: 88.79%, 73.28%, 52.59%, 56.89% and 11.3%, respectively. The data obtained suggests that current antimicrobial intervention strategies used at the plant are relatively effective in reducing Listeria and E. coli contamination on bison carcasses to some extent, however further study is required to determine the influence of current slaughter practices on carcass contamination. The data reported in this study to the authors’ knowledge is some of the first information reporting on the bacteriological status of Bison, and provides some useful baseline information for future research.  相似文献   

9.
Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact to various food products. E. coli O157:H7 produced maximum levels of AI-2 signals in 12 h of incubation in tested meat, poultry, and produce broths and subsequently formed strong biofilm in 24 h of incubation. In general, E. coli O157:H7 formed stronger biofilm on stainless steel than glass. Furthermore, E. coli O157:H7 that had attached on the surface of stainless steel was able to transfer to meat, poultry, ready-to-eat deli, and produce products. Strong attachment of the transferred pathogen on produce products (cantaloupe, lettuce, carrot, and spinach) was detected (>103 CFU/cm2) even after washing these products with water. Our findings suggest that biofilm formation by E. coli O157:H7 on food contact surfaces can be a concern for efficient control of the pathogen particularly in produce products that require no heating or cooking prior to consumption.  相似文献   

10.
Faecal contamination of carcasses in the slaughterhouse is generally considered to be the source of Salmonella on pork. In this study the hygiene indicator Escherichia coli is used to quantify faecal contamination of carcasses and it is hypothesized that it can be used to predict the quantitative carcass contamination with Salmonella, when the distribution of Salmonella concentrations in faeces is known. Paired pig sample data (faecal samples and carcass swabs) were obtained from five slaughterhouses and analysed for prevalence and concentrations of E. coli and Salmonella. A simple model was developed to describe the faecal contamination of carcasses using the E. coli data. The E. coli results suggested different hygiene performances in different slaughterhouses, and showed that a model assuming that carcasses are predominantly contaminated by their own faeces was not appropriate. Observed Salmonella prevalences were low (on average 1.9% on carcasses) and between slaughterhouses the prevalences ranked differently than the hygiene performance based on the E. coli data suggested. Also, the Salmonella concentrations predicted using E. coli as a faecal indicator were lower than the observed Salmonella concentrations. It is concluded that the faecal carriage of Salmonella together with the faecal contamination of carcasses, as predicted from E. coli data in the animal faeces and hygiene performance of the slaughterhouse, is not sufficient to explain carcass contamination with Salmonella. Our extensive data set showed that other factors than the observed faecal carriage of Salmonella by the individual animals brought to slaughter, play a more important role in the Salmonella carcass contamination of pork.  相似文献   

11.
Outbreaks of food-borne pathogens, such as Escherichia coli O157:H7 and Salmonella, continue to draw public attention to food safety. Several reports have demonstrated the efficacy of using natural ingredients to control the growth of food-borne pathogens. The objective of this study was to investigate antimicrobial effects of lactic acid and copper, alone and in combination, on the survival and growth of Salmonella spp. and E. coli O157:H7 in laboratory medium and carrot juice. Survival and growth of 38 Salmonella spp. and six E. coli O157:H7 strains were compared when grown in brain heart infusion (BHI) broth and carrot juice under conditions including either lactic acid (0.2%) alone, copper sulfate (50 ppm) alone or the combination of the two. The growth inhibition was negligible when copper sulfate was added to BHI broth and carrot juice. Lactic acid (0.2%) retarded the growth of bacterial strains. However, the growth of bacterial strains was significantly inhibited when both lactic acid and copper were in BHI broth and carrot juice within the time frame of this study. These findings indicated that lactic acid, in combination with copper sulfate, could be used to inhibit the growth of pathogens. Natural ingredients, such as lactic acid and low dose of copper ions, can be used to improve the safety of food products.  相似文献   

12.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

13.
Escherichia coli O157:H7 (EC O157:H7), as well as its recently emerging non-O157 relatives, are a notorious group of pathogenic bacteria associated with foodborne outbreaks. In this study, we demonstrated that secondary electrospray ionization mass spectrometry (SESI-MS) could be a rapid and accurate detection technology for foodborne pathogens. With SESI-MS volatile organic compound (VOC) profiling, we were able to detect and separate a group of eleven E. coli strains from two major foodborne bacteria, Staphylococcus aureus and Salmonella Typhimurium in three food modeling media. In addition, heatmap analysis of relative peak intensity show that there are six core peaks (m/z of 65, 91, 92, 117, 118 and 119) present and at a similar intensity in all eleven E. coli strains at the experimental conditions we tested. These peaks can be considered conserved VOC biomarkers for E. coli species (robustly produced after just 4 h of growth). Bacterial strain-level differentiation was also attempted via VOC profiling, and we found that EC O157:H7 and EC O145 were differentiable from all other EC strains under the conditions investigated.  相似文献   

14.
Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6–8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06–0.31), 0.55 (95% CI: 0.17–1.20) and 1.43 (95% CI: 0.82–2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R2 > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products.  相似文献   

15.
In the last two decades several foodborne disease outbreaks associated with produce were reported. Tomatoes, in particular, have been associated with several multi-state Salmonella outbreaks. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on whole Roma tomato surfaces by X-ray at 0.1, 0.5, 0.75, 1.0, and 1.5 kGy was studied. The main purpose of this study was to achieve a 5 log reduction in consistent with the recommendations of the National Advisory Committee on Microbiological Criteria for Foods. Moreover, the effect of X-ray on inherent microflora (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated Roma tomatoes, during storage at ambient temperature (22 °C) for 20 days was also determined. Mixtures of three or two strains of each tested organism was spot inoculated (100 μl) onto the surface of Roma tomatoes (approximately 7–9 log per tomato), separately, and air-dried, followed by treatment with X-ray doses at 22 °C and 55–60% relative humidity. Surviving bacterial populations on tomato surfaces were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Treatment with X-ray significantly reduced the population of the tested pathogens on whole Roma tomato surfaces, compared with the control. Approximately 4.2, 2.3, 3.7 and 3.6 log CFU reduction of E. coli O157:H7, L. monocytogenes, S. enterica and S. flexneri per tomato were achieved by treatment with 0.75 kGy X-ray, respectively. More than a 5 log CFU reduction per tomato was achieved at 1.0 or 1.5 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the inherent microflora on Roma tomatoes. Inherent levels were significantly (p < 0.05) lower than the control sample throughout storage for 20 days.  相似文献   

16.
The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.  相似文献   

17.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

18.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

19.
Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety assurance. The Biocontrol GDS® and DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on real-time PCR amplification with potential applications for quantification of specific E. coli O157:H7 gene targets in enriched meat samples. However, there are arguments surrounding the use of these tests to predict pre-enrichment concentrations of E. coli O157:H7, as well as arguments pertaining to the influence of non-viable cells causing false positive results. The present study attempts to illustrate the effects of different bacterial physiologic states and the presence of non-viable cells on the ability of these systems to accurately measure contamination levels of E. coli O157:H7 in ground beef. While the PCR threshold cycle (CT) values of these assays showed a direct correlation with the number of bacteria present in pure cultures, this was not the case for ground beef samples spiked with various levels of injured or healthy cells. Furthermore, comparison of post-enrichment cell densities of bacteria did not correlate with injured or healthy cell numbers inoculated before enrichment process. Ground beef samples spiked with injured or healthy cells at different doses could not be distinguished by CT values from either assay. In addition, the contribution of nonviable cells in generating positive real-time PCR signals was investigated using both assays on pre-enriched and post-enriched beef samples, but only if inoculated at levels of 106 cells/sample or higher, which are levels not typically seen in ground beef.  相似文献   

20.
Real-time PCR (RTiPCR) assays including enrichment stage were evaluated for the rapid detection of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 in raw ingredients and ready-to-eat products using molecular beacon probes available as commercial kits (WARNEX Genevision, Canada & AES Chemunex detection system, France). The accuracy of the assays was evaluated analyzing 1032 naturally contaminated food samples in combination to the conventional cultural methods. Presence/absence testing of the above pathogens was performed in 25 g samples of each product. In case of L. monocytogenes of 39 positive RTiPCR samples, 37 were confirmed by the cultural method (based on McNemar's test the difference between the two methods is insignificant). The highest incidence of L. monocytogenes in food products was found in desserts and the second highest in frozen pastries. None of the samples were cultural positive but negative in the RTiPCR test. One among the 343 investigated samples was positive for Salmonella spp. by RTiPCR and the cultural method. Out of 333 samples analyzed for E. coli O157:H7 no positive sample was detected. RTiPCR-based methods proved to be powerful tools for fast, sensitive and accurate pathogen detection in raw food ingredients and ready-to-eat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号