首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We developed a novel filtration-based method that can eliminate dead or severally damaged Salmonella enterica and Listeria monocytogenes in food samples. This new method can recover all viable bacteria in less than 30 min, and can be coupled with a subsequent bacterial DNA extraction and real-time PCR. No statically significant differences (p < 0.01) were found between real-time PCR results obtained separately from S. enterica and L. monocytogenes when different ratios of living and dead cells were used. The analytical sensitivity in both cases was 1 genome equivalent (GE), and the quantification was linear (R2 > 0.9969) over a 5-log dynamic range with PCR efficiencies >0.9754. When compared with the standard microbiological methods for the detection of these foodborne pathogens, the relative accuracy was excellent ranging from 95.72% to 104.48%. Finally, we applied the pre-treatment method to the direct detection of viable forms of these foodborne pathogens in food samples using yogurt as a model, the results being similar to those obtained using pure cultures.  相似文献   

2.
Spinach plants were irrigated biweekly with water containing 2.1 log CFU Salmonella/100 ml water (the maximum Escherichia coli MPN recommended by the Leafy Greens Marketing Agreement; LGMA), or 4.1 CFU Salmonella/100 ml water to determine Salmonella persistence on spinach leaves. Green Fluorescent protein expressing Salmonella were undetectable by most-probable number (MPN) at 24 h and 7 days following each irrigation event. This study indicates that Salmonella are unlikely to persist on spinach leaves when irrigation water is contaminated at a level below the LGMA standards. In a parallel study, persistence of Salmonella isolated from poultry or produce was compared following biweekly irrigation of spinach plants with water containing 6 log CFU Salmonella/100 ml. Produce Salmonella isolates formed greater biofilms on polystyrene, polycarbonate and stainless steel surfaces and persisted at significantly higher numbers on spinach leaves than those Salmonella from poultry origin during 35 days study. Poultry Salmonella isolates were undetectable (<1 log CFU/g) on spinach plants 7 days following each irrigation event when assayed by direct plating. This study indicates that Salmonella persistence on spinach leaves is affected by the source of contamination and the biofilm forming ability of the strain.  相似文献   

3.
The aim of this study was to determine whether Escherichia coli O157:H7 can be reliably detected and isolated from walnut kernels using standard methods of analysis. The limit of detection approached 1 cell per analytical unit (25 g) for E. coli O157:H7 on walnut kernels enriched in modified tryptic soy broth with 20 μg/ml novobiocin and plating onto selective agar media. The presence of PCR inhibitors in walnut kernels was indicated by the failure to detect E. coli O157:H7 from culture positive enrichment broths analysed by PCR, with two separate polymerase and reagent compositions (Dupont BAX E. coli O157:H7 MP system, Promega GoTaq Green for stx) and three methods of template preparation (DuPont BAX, Qiagen DNeasy, Bio-Rad InstaGene). PCR inhibition was overcome by 1:100 dilution in TE buffer of the DNeasy or InstaGene template. PCR inhibition was not relieved by dilution of the BAX template. Similar results were observed for walnut kernels inoculated with Salmonella enterica and analysed for invA, indicating that PCR inhibition is not specific to the organism or primer/template. These results indicate that analysis of walnut kernels for pathogens should be with culture based methods or use protocols for DNA template preparation modified to remove or dilute inhibitors and the need for internal amplification controls in PCR methods.  相似文献   

4.
The effect of marination on the survival and growth of the pathogens Salmonella enterica and Listeria monocytogenes on beef pieces was investigated.  相似文献   

5.
A longitudinal observational study of 59 dairy herds was conducted in Washington State to estimate the rate of introduction of new multidrug-resistant (MDR) Salmonella enterica strains onto commercial dairy herds. Samples were collected on these herds over 7 visits separated by intervals of 2 to 4 mo over a period of 15 to 21 mo. Samples were cultured for Salmonella spp. and serogroup, serovar, and antimicrobial susceptibility patterns were identified for MDR Salmonella isolates. Fingerprinting generated by pulsed-field gel electrophoresis (PFGE) using XbaI restriction enzyme digestion generated genotyping profiles for all MDR isolates identified in the study. The rate of new MDR Salmonella strain introduction was 0.9 per herd-year (95% confidence interval: 0.6-1.4). The rates for the most commonly introduced MDR Salmonella serovars were 0.4/herd-year for Typhimurium, 1.2/herd-year for Newport, and 0.1/herd-year for Dublin. Thirty-three of 59 herds (56%) had at least one new MDR Salmonella introduction during the study period. The number of new MDR Salmonella strains acquired by dairy herds ranged from zero to 8. Thirteen of the 59 herds had a history of clinical salmonellosis. Among these 13 herds, 6 herds acquired new MDR Salmonella strains, although these strains were different than historical clinical strains. These data indicate that acquisition of new MDR Salmonella strains by dairy herds was a common event in participating herds, although the number of strains introduced varied greatly among herds.  相似文献   

6.
The aim of this study was to investigate the existence and characteristics of Salmonella enterica in dried milk-related infant foods. Twenty-four (3.4%) of 705 samples, including 5 (2.0%) of 246 powdered infant formula, 18 (4.0%) of 445 infant rice cereal, and 1 (7.1%) of 14 other infant foods, were positive for Salmonella. Fifteen serotypes were identified in 40 Salmonella isolates; Salmonella Duesseldorf (15.0%) and Salmonella Indiana (15.0%) were more frequently detected than other serotypes. Resistance to chloramphenicol (82.5%) was most common, followed by tetracycline (57.5%), ceftiofur (52.5%), kanamycin (52.5%), streptomycin (50.0%), gentamycin (45.0%), nalidixic acid (35.0%), ceftriaxone (32.5%), ciprofloxacin (25.0%), amikacin (20.0%), and cefoxitin (15.0%). Twenty-eight (70.0%) isolates were resistant to ≥8 antimicrobials, with 5 (12.5%) being resistant to 14 antimicrobials. Amino acid substitutions in gyrase A (GyrA) were most frequently detected as Ser83Arg/Asp87Glu and in p53-associated Parkin-like cytoplasmic protein (ParC), they were all Ser80Arg; the quinolone resistance gene qnrS (47.5%) was commonly detected as well as aminoglycoside acetyltransferase [aac(6′)-Ib; 25.0%], qnrA (17.5%), and qnrB (15.0%) genes. Thirty distinct pulsed-field gel electrophoresis patterns were identified among 40 isolates; no identical pulsed-field gel electrophoresis pattern was detected among Salmonella isolates with the same serovar that was recovered in 2010 and 2012. Our results suggest that dried milk-related infant foods could be contaminated with Salmonella and highlight that the dangers to infant health should not be neglected.  相似文献   

7.
Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica are the most common foodborne bacterial pathogens and are responsible for many outbreaks. Therefore, multiplex detection of these three using a single assay platform is highly desirable. The objective was to develop and optimize a fiber optic sensor for simultaneous detection of these three from food. The streptavidin coated optical waveguides were immobilized with biotinylated polyclonal antibodies and exposed to the bacterial suspensions or enriched food samples for 2 h. Pathogens were detected after reacting with Alexa-Fluor 647-labeled monoclonal antibodies. Ready-to-eat beef, chicken and turkey meats were inoculated with each pathogen (∼100 cfu/25 g), enriched in SEL (Salmonella, E. coli, Listeria), a multipathogen selective enrichment broth for 18 h and tested with the biosensor. The biosensor was able to detect each pathogen, individually or in a mixture with very little cross-reactivity. The limit of detection for the sensor was ∼103 cfu/ml for all three pathogens. Furthermore, the biosensor successfully detected each pathogen, grown in a mixture from enriched meat samples under 24 h. The pathogen presence was further verified by PCR and immunofluorescence assay. The multiplex fiber optic sensor shows promise for detection of the three pathogens if present in the same sample eliminating the use of multiple single pathogen detection platforms.  相似文献   

8.
In this study, a combined enrichment/real-time PCR method for the rapid detection of Salmonella on fresh meat carcasses, was designed, developed and validated in-house following requirements outlined in ISO 16140:2003. The method included an 18 h non-selective enrichment in buffered peptone water (BPW) and a 6 h selective enrichment in Rappaport Vasilliadis Soya (RVS) broth, based on the traditional culture method, ISO 6579:2002. The real-time PCR assay included an internal amplification control (IAC), was 100% specific and was sensitive to one cell equivalent. The alternative method was validated against the traditional culture method and relative accuracy of 94.9%, sensitivity of 94.7% and specificity of 100% were determined using 150 fresh meat carcass swabs. This alternative method had a detection limit of 1–10 CFU/100 cm2 for fresh meat carcass swabs and was performed in 26 h. Following further inter-laboratory studies, this alternative method could be suitable for implementation in testing laboratories for the analysis of carcass swabs.  相似文献   

9.
In this investigation we selected and isolated a culture derived from Salmonella enterica serovar Typhimurium SL1344 with stable increased resistance to pulsed electric fields (PEF) after repeated rounds of PEF treatment and outgrowth of survivors. The resulting culture showed a higher resistance to PEF treatments under different treatment conditions. The acquisition of PEF resistance was only observed in stationary phase cells. The cytoplasmic membrane of the resistant variant showed a higher resilience against PEF treatments, since a lower permeabilization degree was observed after PEF treatments, in comparison to the parental strain. Resistance to PEF was also accompanied by a higher tolerance to acidic pH, hydrogen peroxide and ethanol, but not to heat. The occurrence of a PEF resistant variant in S. enterica serovar Typhimurium SL1344 emphasizes the need to further study the mechanisms of inactivation and resistance by PEF for an adequate design of safe treatments.  相似文献   

10.
The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (Iceberg and Romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were washed, dip inoculated with S. Newport (6-log CFU/ml) and dried. Oregano oil was prepared at 0.1, 0.3, and 0.5% concentrations in sterile phosphate buffered saline (PBS). Inoculated leaves were immersed in the treatment solution for 1 or 2 min, and individually incubated at 4 or 8 °C. Samples were taken at day 0, 1, and 3 for enumeration of survivors. The results showed that oregano oil was effective against S. Newport at all concentrations. S. Newport showed reductions from the PBS control of 0.7–4.8 log CFU/g (Romaine lettuce), 0.8–4.8 log CFU/g (Iceberg lettuce), 0.8–4.9 log CFU/g (mature spinach), and 0.5–4.7 log CFU/g (baby spinach), respectively. The antibacterial activity also increased with exposure time. Leaf samples treated for 2 min generally showed greater reductions (by 1.4–3.2 log CFU/g), than those samples treated for 1 min; however, there was minimal difference in antimicrobial activity among samples stored under refrigeration and abuse temperatures. This study demonstrates the potential of oregano oil to inactivate S. Newport on organic leafy greens.  相似文献   

11.
12.
Cold atmospheric gas plasma treatment (CAP) is an alternative approach for the decontamination of fresh and minimally processed food. In this study, the effects of growth phase, growth temperature and chemical treatment regime on the inactivation of Salmonella enterica serovar Typhimurium (S. Typhimurium) by Nitrogen CAP were examined. Furthermore, the efficacy of CAP treatment for decontaminating lettuce and strawberry surfaces and potato tissue inoculated with S. Typhimurium was evaluated. It was found that the rate of inactivation of S. Typhimurium was independent of the growth phase, growth temperature and chemical treatment regime. Under optimal conditions, a 2 min treatment resulted in a 2.71 log-reduction of S. Typhimurium viability on membrane filters whereas a 15 min treatment was necessary to achieve 2.72, 1.76 and 0.94 log-reductions of viability on lettuce, strawberry and potato, respectively. We suggest that the differing efficiency of CAP treatment on the inactivation of S. Typhimurium on these different types of fresh foods is a consequence of their surface features. Scanning electron microscopy of the surface structures of contaminated samples of lettuce, strawberry and potato revealed topographical features whereby S. Typhimurium cells could be protected from the active species generated by plasma.  相似文献   

13.
Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng–50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 104 CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food.  相似文献   

14.
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is a major cause of foodborne salmonellosis. Rapid, efficient and accurate methods for identification are required to track specific strains of S. Enteritidis during outbreaks of human salmonellosis. By exploiting the hypervariable nature of virulence genes and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs), we previously developed a powerful sequence-based subtyping approach, designated CRISPR-MVLST. To substantiate the applicability of CRISPR-MVLST, we analyzed a broad set of S. Enteritidis isolates collected over a six-year period. Among 141 isolates we defined 22 Enteritidis Sequence Types (ESTs), the majority of which were novel. Notably, strains exhibiting the common PFGE pattern, JEGX01.0004 (characteristic of ∼40% of S. Enteritidis isolates in the United States), were separated into twelve distinct sequence types. Conversely, isolates of EST4, the most predominant EST we observed, comprised eight different PFGE patterns. Importantly, we showed that some genotypes that were previously associated with the food supply chain at the farm level have now been identified in clinical samples.  相似文献   

15.
Cross contamination of foodborne pathogens from raw meats to ready-to-eat foods has caused a number of foodborne outbreaks. The cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under various food-handling scenarios were determined. The following scenarios were tested: in scenario 1, cutting board and knife used to cut chicken (106 CFU/g) were also used for cutting lettuce, without washing; in scenario 2, cutting board and knife were washed with water separately after cutting chicken, and subsequently used for cutting lettuce; and in scenario 3, cutting board and knife were thoroughly washed with soap and hot water after cutting chicken, and before cutting lettuce. In each scenario, cutting board, knife, chicken and lettuce were sampled for population of S. enterica. For scenario 1, both before and after cutting lettuce, the cutting board and knife each had about 2 logs CFU/cm2 of S. enterica, respectively. The cut lettuce had about 3 logs CFU/g of S. enterica. In scenario 2, fewer organisms (0.5–2.4 logs CFU/g or cm2) were transferred. The transfer rates in both scenarios ranged from 0.02 to 75%. However, in scenario 3, <1 log CFU/g or cm2 organisms were detected on lettuce, cutting board or knife, after washing and cutting lettuce. This shows that the FDA recommended practice for cleaning cutting boards is effective in removing S. enterica and preventing cross contamination.  相似文献   

16.
17.
A rapid method for the detection of Listeria monocytogenes in foods combining culture enrichment and real-time PCR was compared to the ISO 11290-1 standard method. The culture enrichment component of the rapid method is based on the ISO standard and includes 24 h incubation in half-Fraser broth, 4 h incubation in Fraser broth followed by DNA extraction and real-time PCR detection of the ssrA gene of L. monocytogenes. An internal amplification control, which is co-amplified with the same primers as the L. monocytogenes DNA, was also included in the assay. The method has a limit of detection of 1–5 CFU/25 g food sample and can be performed in 2 working days compared to up to 7 days for the ISO standard. A variety of food samples from retail outlets and food processing plants (n = 175) and controls (n = 31) were tested using rapid and conventional methods. The rapid method was 99.44% specific, 96.15% sensitive and 99.03% accurate when compared to the standard method. This method has the potential to be used as an alternative to the standard method for food quality assurance providing rapid detection of L. monocytogenes in food.  相似文献   

18.
The inherent acid and heat resistances of 60 Salmonella enterica strains were assessed in tryptone soy broth without dextrose acidified to pH 3.0 or heated at 57 °C. A total of 360 inactivation curves were generated. Regarding the acid challenge experiments, the inactivation rate (kacid), estimated using the log–linear model, ranged from 0.47 to 3.25 h−1. A log–linear model with a “survival tail” was used to describe the thermal inactivation of the strains, and the estimated inactivation rate (kheat) ranged from 0.42 to 1.33 min−1. The strain variability of kacid was considerably higher than that of kheat with the coefficient of variation of this kinetic parameter among the tested strains being 39.0% and 18.3%, respectively. No correlation was observed between the estimated kacid and kheat values of the 60 S. enterica strains. Furthermore, no trends among the tested strains related to origin, serotype or antibiotic resistance profile were evident. The present study is the first one to comparatively evaluate the inherent acid and heat resistance profiles of multiple S. enterica strains. Beyond their value in strain selection for use in food safety challenge studies, the collected data should be useful in describing and integrating the strain variability of S. enterica acid and heat resistance profiles in quantitative microbial risk assessment.  相似文献   

19.
The potential impact of post-pasteurisation contamination of liquid egg products with the multi-antibiotic resistant pathogen Salmonella enterica serotype Typhimurium definitive type 104 (DT104) was assessed by determining the viability of this bacterium in whole egg, albumen and 10% w/w sugared and salted yolk incubated at 4–42 °C. Results indicated that populations of S. Typhimurium DT104 were slowly inactivated in all four products when stored at 4 °C. However, based on the typical shelf-lives of cold-stored liquid egg, less than 0.6 log-kill would be achieved in those products prior to their use. Incubation at temperatures pertaining to abuse situations (10, 15, 20 and 25 °C) revealed an increasing potential for growth of S. Typhimurium DT104 in whole egg, albumen and sugared yolk, as indicated by trends in growth rate, lag duration and maximum population density. At even higher temperatures (30, 37 and 42 °C), growth rates of S. Typhimurium DT104 in whole egg and sugared yolk continued to increase. The same was true for S. Typhimurium DT104 in albumen except that growth was not observed at 42 °C and instead populations were inactivated within 30 h. At no temperature tested was S. Typhimurium DT104 able to grow in salted yolk. The influence of these growth and inactivation patterns on the risk of salmonellosis in relation to product type and storage temperature is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号