首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser welding with oscillation laser beams enables control of the heat input distribution. In this study, we attempted to develop a narrow-gap welding process with oscillation laser welding. This process is expected to prevent a lack of fusion because the entire bottom to the groove can be melted by the oscillation laser. As the first step of the study, bead-on-plate welding experiments with an oscillation laser beam were performed to investigate the relationship between the welding conditions and welding results. The experiments revealed that the oscillation conditions strongly affect the welding penetration shape. It was clarified that the wire melting phenomena in oscillation laser welding differed from those of straight (non-oscillation) laser welding. Additionally, narrow-gap laser welding experiments were performed to investigate the relationship between the oscillation conditions and gap width. The results confirmed the effectiveness of oscillation laser welding for narrow-gap welding.  相似文献   

2.
Abstract

The objectives of this research are to investigate penetration characteristics, to clarify welding phenomena and to develop high quality welding procedures in bead on plate welding of type 304 austenitic stainless steel plates with a 10 kW fibre laser beam. The penetration depth reached 18 mm at the maximum at 5 mm s?1. At 50 mm s?1 or lower welding speeds, however, porosity was generated at any fibre laser spot diameter. On the other hand, at 100 mm s?1 or higher welding speeds, underfilling and humping weld beads were formed under the conventionally and tightly focused conditions respectively. The generation of spatters was influenced mainly by a strong shear force of a laser induced plume and was greatly reduced by controlling direction of the plume blowing out of a keyhole inlet. The humping formation was dependent upon several dynamic or static factors, such as melt volume above the surface, strong melt flow to the rear molten pool on the top surface, solidification rate and narrow molten pool width and corresponding high surface tension. Its suppression was effective by producing a wider weld bead width under the defocused laser beam conditions or reduction of melt volume out of keyhole inlet under the full penetration welding conditions. Concerning porosity, X-ray transmission in situ observation images demonstrated that pores were formed not only from the tip of the keyhole but also at the middle part because of high power density. The keyhole behaviour was stabilised using a nitrogen shielding gas, resulting in porosity prevention. Consequently, to produce high quality welds in 10 kW high power fibre laser welding, the reduction procedures of welding defects were required on the basis of understanding their formation mechanism, and 10 kW fibre laser power could produce sound deeply penetrated welds of 18 mm depth in a nitrogen shielding gas.  相似文献   

3.
激光束—电阻缝焊(LB—RSW)复合焊接研究   总被引:3,自引:0,他引:3  
基于提出的LB-RSW复合焊接方法的基本概念,研究了"激光束-电阻缝焊(LB-RSW)"复合焊接系统的结构形式和基本组成,自主研制了专用的多功能电阻缝焊机,并与Nd:YAG激光器和焊接机器人组成了LB-RSW焊接试验系统;工艺试验表明,LB-RSW比单独激光焊有更大的深/宽比和拉剪力,显著提高了激光对高反射率材料的加工能力和工程应用范围;进行了LB-RSW中RSW温度场和电流场的数值模拟和热成像测量.结果表明,数值模拟技术和红外热成像技术是研究复合焊接过程的有效手段.  相似文献   

4.
Abstract

A pair of Nd–YAG laser beams transmitted through optical fibres from two oscillators have been condensed separately and combined at a single point on the workpiece in order to enhance welding ability. Bead on plate tests were carried out with symmetric arrangements of condensing optics in two different welding directions. Transition from penetration with one keyhole bottom to penetration with two bottoms occurred as the laser power increased when the angles of incidence of the laser beams were 30 or 45°. No transition occurred at 15°. Melting efficiency increased dramatically at the transition power, the transition conditions being determined by laser power and heat input.  相似文献   

5.
YAG laser welding with surface activating flux   总被引:4,自引:1,他引:4  
YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coeffwient, thus, the change of fluid flow pattern in weld pool due to the flux.  相似文献   

6.
Summary

With regard to the fact that, during Cu wire stitch bonding of copper lead frames, the wire deformation strongly affects the bondability and strength of the bonds obtained, this paper describes an investigation of the wire deformation being varied through variation in the initial capillary tip load and capillary tip load during application of ultrasonic vibration as well as the bondability and bond strength then obtained. When stitch bonding with soft copper wire is performed by the two‐step load control method, which has a higher initial capillary tip load and a lower capillary tip load during the second stage, the range of action of the material being worked under ultrasonic vibration can be widened, the deformation during the working time of ultrasonic vibration can be suppressed, the ultrasonic energy can make a greater contribution to bonding, and a higher bond strength can be obtained. The results obtained in this study suggest that, during wire bonding by the two‐step load control method, the optimum capillary tip load is obtained. Within the presently adopted experimental range, the optimum values are a capillary tip load of 1.4 N before the application of ultrasonic vibration and a capillary tip load of 0.4 N during ultrasonic vibration.  相似文献   

7.
Abstract

This paper deals with a combination of two different welding processes, i.e. the synergic action of two different heat sources for fusion welding. The major part of the paper is focused on the combined action of a welding arc and a laser beam. The main advantage of the use of both heat sources is more efficient use of the energy supplied. With certain parameters, the quantity of molten material increases by 100% compared with the sum of the individual quantities of molten material in the individual processes. The paper further presents several practical applications of the combined welding process. Eventually, development of arc augmented laser welding may progress in two directions; the first being the synergic effect of a laser beam and plasma welding arc and the second the combination of tandem laser welding and consumable electrode welding. This paper presents two such cases schematically.  相似文献   

8.
光束摆动法减小激光焊接气孔倾向   总被引:6,自引:5,他引:6       下载免费PDF全文
针对激光深熔焊过程中易出现的气孔问题,作者提出光束摆动激光焊接减小气孔倾向的工艺。利用3kW快轴流CO2激光器分别对激光焊接过程中可能出现的氮气孔和氩气孔进行了试验研究。结果表明,光束摆动激光焊接对氮气孔有显著的消除效果,随着摆动频率的增加,气孔急剧减少,并且在摆动幅度仅为0.5mm的情况下,就可以起到消除气孔的效果;光束摆动激光焊接对于抑制氩气孔也有一定作用,摆动频率越大,摆动幅度越大,对熔池的搅拌越大,越有利于气泡的逸出,焊缝中氩气孔越少。  相似文献   

9.
10kW光纤激光焊接缺陷的形成   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了未熔透光纤激光焊接过程中工艺参数对小孔型气孔、热裂纹和飞溅的影响,并讨论焊接缺陷形成机理. 结果表明,随着光纤激光焊接速度的增加,焊缝气孔和热裂纹倾向降低. 当焦点位置在工件表面时,气孔倾向最大;而当焦点位置由入焦向离焦偏移时,热裂纹敏感性增加. 光纤激光焊接气孔是由小孔不稳定引起的,而小孔不稳定性同时引起了熔池后部凝固前沿形状的变化,提高了焊缝热裂纹的敏感性. 较慢速光纤激光焊接飞溅的形成主要在于小孔开口处前沿熔池的凸起,其程度可能与小孔的稳定性有关.  相似文献   

10.
利用Nd:YAG激光焊接了铍环,研究了不同激光入射角度和铍环直径变化对阈值功率变化的影响,得到了铍在激光焊接过程中阈值功率密度变化规律.结果表明,铍环直径大小对阈值功率密度有显著影响,随着铍环直径的增加,铍环的曲率减小,由背反射引起的调Q脉冲增强,导致出现深熔焊的阈值功率密度降低.对同一直径的铍环,激光入射角度从0°调整到3°后,由于消除了背反射激光在谐振腔内形成调Q脉冲,激光焊接时出现深熔焊的临界功率密度增加.深熔焊形成的焊缝深宽比值较大,为1.0~1.5,而热传导焊形成的焊缝深宽比值较小,只有0.2左右.  相似文献   

11.
Abstract

The weldability of 1.6 mm thick 5182 Al–Mg alloy sheet by the single- and dual-beam Nd:YAG laser welding processes has been examined. Bead-on-plate welds were made using total laser powers from 2.5 to 6 kW, dual-beam lead/lag laser beam power ratios ranging from 3:2 to 2:3 and travel speeds from 4 to 15 m min-1. The effects of focal position and shielding gas conditions on weld quality were also investigated. Whereas full penetration laser welds could be made using the 3 kW single-beam laser welder at speeds up to 15 m min-1, the underbead surface was always very rough with undercutting and numerous projections or spikes of solidified ejected metal. This 'spikey' underbead surface geometry was attributed to the effects of the high vapour pressure Mg in the alloy on the keyhole dynamics. The undesirable 'spikey' underbead geometry was unaffected by changes in focal position, shielding gas parameters or other single-beam welding process parameters. Most full penetration dual-beam laser welds exhibited either blow-through porosity at low welding speeds (4–6 m min-1) or unacceptable 'spikey' underbead surface quality at increased welding speeds up to 13.5 m min-1. Radiography revealed significant occluded porosity within borderline or partial penetration welds. This was thought to be caused by significant keyhole instability that exists under these welding conditions. A limited range of dual-beam laser process conditions was found that produced sound, pore-free laser welds with good top and underbead surface quality. Acceptable welds were produced at welding speeds of 6 to 7.5 m min-1 using total laser powers of 4.5–5 kW, but only when the lead laser beam power was greater than or equal to the lagging beam power. The improved underbead quality was attributed to the effect of the second lagging laser beam on keyhole stability, venting of the high vapour pressure Mg from the keyhole and solidification of the underbead weld metal during full penetration dual-beam laser welding.  相似文献   

12.
Abstract

In the present work a 2·5 kW high power Nd–YAG laser is used in the bead on plate (BOP) and butt welding of Inconel 690 plates of thickness 3 mm. Welding is performed using a rectangular laser pulse, for which the peak to base power ratio Wr is reduced from an initial value of 10 to a value of 1, maintaining an identical mean power of 1·7 kW. Therefore, the welding mode changes from a pulsed wave to a continuous wave. The BOP results indicate that the depth of the weld penetration increases at a lower travel speed and/or a higher value of Wr. In the butt welding process, as Wr is increased from 1 to 10, the cellular microstructure of the weld remains relatively unchanged, but the macroporosity formation ratio decreases from 7·1% to 0·6%. At low values of Wr, macroporosity is identified primarily in the root region. However, as Wr increases, the associated periodic high power increases the agitation of the molten pool and probably causes bubbles to float upwards. Consequently, at higher values of Wr, the regions of macroporosity are distributed randomly throughout the weld. Although microcracks are not apparent within any of the welds, each weld exhibits slight microporosity. This microporosity decreases as Wr increases. The present results confirm that a pulsed laser beam with an appropriate peak power can be used to achieve a compromise between the mechanical properties and surface roughness of the weld for Inconel 690 in Nd–YAG laser welding.  相似文献   

13.
The utility of a new laser interferometric technique, inline coherent imaging, for real time keyhole depth measurement during laser welding is demonstrated on five important engineering alloys. The keyhole depth was measured at 200 kHz with a spatial resolution of 22 μm using a probe beam, which enters the keyhole coaxially with the process beam. Keyhole fluctuations limited average weld depth determination to a resolution on the order of 100 μm. Real time keyhole depth data are compared with the weld depths measured from the corresponding metallographic cross-sections. With the exception of an aluminium alloy, the technique accurately measured the average weld depth with differences of less than 5%. The keyhole depth growth rates at the start of welding are measured and compare well with order of magnitude calculations. The method described here is recommended for the real time measurement and control of keyhole depth in at least five different alloys.  相似文献   

14.
A multifactor mathematical model is developed to optimize components' restorative processes. The model is based on neuronet technology principles, it allows for specifying the range of the factors most influencing the optimization criterion.  相似文献   

15.
针对5A90铝锂合金双光点激光焊研究表明,当激光功率和焊接速度一定时,合理的选择激光功率、光点间距和能量比,可以提高焊接过程的稳定性,有效改善焊缝的成形质量.改变光点的排列方式可以增大焊缝的正面熔宽,背面熔宽则取决于激光的穿透能力.分析发现铝锂合金激光焊焊缝中的气孔分为冶金性气孔与工艺性气孔两类,双光点激光焊接可有效防止工艺气孔.  相似文献   

16.
17.
18.
19.
20.
Abstract

The present paper describes a beam weaving laser welding technique to suppress argon or nitrogen porosity, which may appear during laser welding of low carbon steel. Bead on plate welding was performed using a 3 kW CO2 laser. The weaving frequency was varied within 0–30 Hz and the weaving amplitude within 0–2 mm during welding. The experimental results show that under 2.4 kW laser power and 1.0 m min-1 welding speed, the nitrogen porosity decreases remarkably with increasing frequency, and it can be eliminated for a weaving frequency of 22 Hz with 0.5 mm weaving amplitude. Under 2.4 kW laser power and 1.5 m min-1 welding speed, beam weaving laser welding can also effectively reduce argon porosity at a weaving frequency of 22 Hz and amplitude of 1.0–1.5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号