首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

2.
3.
We describe herein the hierarchical self‐assembly of discrete supramolecular metallacycles into ordered fibers or spherical particles through multiple noncovalent interactions. A new series of well‐defined metallacycles decorated with long alkyl chains were obtained through metal–ligand interactions, which were capable of aggregating into ordered fibroid or spherical nanostructures on the surface, mostly driven by hydrophobic interactions. In‐depth studies indicated that the morphology diversity was originated from the structural information encoded in the metallacycles, including the number of alkyl chains and their spatial orientation. Interestingly, the morphology of the metallacycle aggregates could be tuned by changing the solvent polarity. These findings are of special significance since they provide a simple yet highly controllable approach to prepare ordered and tunable nanostructures from small building blocks by means of hierarchical self‐assembly.  相似文献   

4.
One of the simplest and most‐versatile motifs in supramolecular chemistry is based on 1,3,5‐benzenetricarboxamides. Variation of the core structure and subtle changes in the structures of the lateral substituents govern the self‐assembly and determine the phase behavior. Herein, we provide a comprehensive comparison between the phase behavior and mesophase structure of a series of 1,3,5‐benzene‐ and 1,3,5‐cyclohexanetricarboxamides that contain linear and branched alkyl substituents. Depending on the substituent, different crystalline, plastic crystalline, and liquid crystalline phases were formed. The relatively rare columnar nematic (NC) phase was only observed in cyclohexane‐based trisamides that contained linear alkyl substituents. Of fundamental interest in liquid crystalline supramolecular systems is the transition from the mesomorphic state into the isotropic state and, in particular, the question of how the order decreases. Temperature‐dependent IR spectroscopy and XRD measurements revealed that columnar H‐bonded aggregates were still present in the isotropic phase. At the clearing transition, mainly the lateral order was lost, whilst shorter columnar aggregates still remained. A thorough understanding of the phase behavior and the mesophase structure is relevant for selecting processing conditions that use supramolecular structures in devices or as fibrillar nanomaterials.  相似文献   

5.
In covalent polymerization, a single monomer can result in different polymer structures due to positional, geometric, or stereoisomerism. We demonstrate that strong hydrophobic interactions result in stable noncovalent polymer isomers that are based on the same covalent unit (amphiphilic perylene diimide). These isomers have different structures and electronic/photonic properties, and are stable in water, even upon prolonged heating at 100 °C. Such combination of covalent‐like stability together with structural/functional variation is unique for noncovalent polymers, substantially advancing their potential as functional materials.  相似文献   

6.
7.
A C3‐symmetric benzene‐1,3,5‐tricarboxamide substituted with ethyl cinnamate was found to self‐assemble into supramolecular gels with macroscopic chirality in a DMF/H2O mixture. The achiral compound simultaneously formed left‐ and right‐handed twists in an unequal number, thus resulting in the macroscopic chirality of the gels without any chiral additives. Furthermore, ester–amide exchange reactions with chiral amines enabled the control of both the handedness of the twists and the macroscopic chirality of the gels, depending on the structures of the chiral amines. These results provide new prospects for understanding and regulating symmetry breaking in assemblies of supramolecular gels formed from achiral molecular building blocks.  相似文献   

8.
A hydrogen‐bonded cyclic tetramer is assembled with remarkably high effective molarities from a properly designed dinucleoside monomer. This self‐assembled species exhibits an impressive thermodynamic and kinetic stability and is formed with high fidelities within a broad concentration range.  相似文献   

9.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

10.
11.
Driven round the twist by DNA : One‐dimensional helical J‐aggregates are formed by the self‐assembly of thymidylic acid appended anthracene dye (shown in red and yellow) in the presence of complementary single‐stranded oligoadenylic acid (shown in green and blue) in an aqueous solution.

  相似文献   


12.
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono‐δ‐lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo‐transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.  相似文献   

13.
14.
Highly selective, narcissistic self‐sorting can be achieved in the formation of self‐assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high‐fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process.  相似文献   

15.
N‐Centred benzene‐1,3,5‐tricarboxamides (N‐BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid‐state behaviour and self‐assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X‐ray diffraction revealed that the chiral N‐BTA derivatives with branched 3,7‐dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Colho. In contrast, N‐BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable‐temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N‐BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N‐BTAs revealed a cooperative self‐assembly behaviour of the N‐BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants‐and‐soldiers as well as the majority‐rules principles were operative in stacks of N‐BTAs. In fact, the self‐assembly of N‐BTAs resembles closely that of their carbonyl (C?O)‐centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self‐assembly of N‐ and C?O‐BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N‐BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the Ph? NH bond compared to the Ph? CO bond and the diminished magnitude of dipole–dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N‐BTAs and C?O BTAs.  相似文献   

16.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

17.
Despite the central importance of aqueous amphiphile assemblies in science and industry, the size and shape of these nano‐objects is often difficult to control with accuracy owing to the non‐directional nature of the hydrophobic interactions that sustain them. Here, using a bioinspired strategy that consists of programming an amphiphile with shielded directional Watson–Crick hydrogen‐bonding functions, its self‐assembly in water was guided toward a novel family of chiral micelle nanotubes with partially filled lipophilic pores of about 2 nm in diameter. Moreover, these tailored nanotubes are successfully demonstrated to extract and host molecules that are complementary in size and chemical affinity.  相似文献   

18.
Herein, the relationship between the supramolecularly self‐assembled nanostructures and the chemical structures of coil‐rod‐coil molecules is discussed. A series of nonamphiphilic coil‐rod‐coil molecules with different alkyl chains, central mesogenic groups, and chemical linkers were designed and synthesized. The solvent‐mediated supramolecular self‐assembling of these coil‐rod‐coil molecules resulted in rolled‐up nanotubes, nanofibers, submicron sized belts, needle‐like microcrystals, and amorphous structures. The self‐assembling behaviors of these coil‐rod‐coil molecules have been systematically investigated to reveal the relationship between the supramolecularly self‐assembled nanostructures and their chemical structures. With respect to the formation of rolled‐up nanotubes by self‐assembly of coil‐rod‐coil molecules, we have systematically investigated the following three influencing structural factors: 1) the alkyl chain length; 2) the central mesogenic group; (3) the linker type. These studies disclosed the key structural features of coil‐rod‐coil molecules for the formation of rolled‐up nanotubes.  相似文献   

19.
Enantiomeric L ‐ or D ‐glutamic acid based lipids were designed and their self‐assembly was investigated. It was found that at a certain concentration, either L ‐ or D ‐enantiomeric derivatives could self‐assemble in absolute alcohol to form a white organogel, which was composed of ultralong nanotubes with an aspect ratio higher than 1000. Further investigations revealed that these nanotubes were in chiral forms. The chirality of the nanotubes was determined by that of the enantiomers employed. In addition, when D and L enantiomers were mixed in different ratios, the nanotube could be tuned consecutively from nanotubes with a helical seam to nanotwists, the chirality of which being determined by the excess enantiomer in the mixed systems. In the case of an equimolar mixture of the enantiomers, flat nanoplates instead of helical nanotubes or nanotwists were obtained. The FTIR vibrational data and XRD layer‐distance values showed a consecutive change as a function of the enantiomeric excess. It was further revealed that the slightly stronger interaction between D –L enantiomeric pairs than that between D –D or L –L pairs was responsible for the formation of the diverse self‐assembled nanostructures.  相似文献   

20.
Water surrounded by hydrophobic interfaces affects a variety of chemical reactions and biological activities. Carbon nanotubes (CNTs) can be used to investigate the behavior of water at hydrophobic interfaces. Here, we determined the fundamental unit of water by evaluating the ice‐like cluster formation of water in the limited hydrophobic nanospaces of CNTs, using X‐ray diffraction and molecular simulation analysis. The water in CNTs with a diameter of 1 nm had fewer hydrogen bonds than bulk water under ambient conditions. In CNTs with diameters of 2 and 3 nm, water formed nanoclusters even under ambient conditions, because of prolific hydrogen bonding; predominant ice‐like cluster formation was induced in the 2–3 nm nanospaces. The results confirming the cluster formation in the CNTs also demonstrated that the critical cluster size was 0.8–3.4 nm. The fundamental cluster size was 0.8 nm; these results indicated that 0.8 nm clusters are the fundamental units of water assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号