首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 17 毫秒
1.
车辆检测是智能交通系统重要的一个研究方向.针对监控视角下的车辆检测问题,提出了一种改进YOLOX算法的车辆检测方法.使用网络深度更小的YOLOX_S模型,对网络结构改进.使用GHOST深度可分离卷积模块代替部分传统卷积,在保证模型检测精度的同时减少模型参数;将CBAM注意力模块融合到特征提取网络中,并添加特征增强结构,加强特征提取网络获得的特征图语义信息,增强提取网络对目标的检测能力;通过使用CIoU_loss优化损失函数,提高模型边界框的定位精度.测试实验结果表明,改进后的网络识别准确率提升了2.01%,达到95.45%,证明了改进方法的可行性.  相似文献   

2.
交通标志识别是自动驾驶技术中的关键一部分.针对交通标志在道路场景中目标较小且识别精度较低的问题,提出一种改进的YOLOv5算法.首先在YOLOv5模型中引入全局注意力机制(GAM),提高网络捕获不同尺度交通标志特征的能力;其次将YOLOv5算法中使用的GIoU损失函数更换为更具回归特性的CIoU损失函数来优化模型,提高对交通标志的识别精度.最后在Tsinghua-Tencent 100K数据集上进行训练,实验结果表明,改进后的YOLOv5算法对交通标志识别的平均精度均值为93.00%,相比于原算法提升了5.72%,具有更好的识别性能.  相似文献   

3.
针对目前交通标志识别任务在使用深度学习算法时存在模型参数量大、实时性较差和准确率较低的问题,提出了基于YOLO v3改进的交通标志识别算法。该算法首先将深度可分离卷积引入YOLO v3算法的特征提取层,将卷积过程分解为深度卷积、逐点卷积两部分,实现通道内卷积与通道间卷积之间的分离,从而保证了在较高识别准确率的基础上极大地减少了算法模型参数数量以及计算量。其次,在损失函数设计上使用广义交并比(GIoU)损失替换均方误差(MSE)损失,将评测标准量化为损失,解决了MSE损失存在的优化不一致和尺度敏感的问题,同时将Focal损失加入到损失函数以解决正负样本严重不均衡的问题,通过降低大量简单背景类的权重使得算法更专注于检测前景类。将该算法应用于交通标志任务中的结果表明,在TT100K数据集上,该算法的平均精度均值(mAP)指标达到了89%,相较于YOLO v3算法提升了6.6个百分点,且其参数量仅为原始YOLO v3算法的1/5左右,每秒帧数(FPS)亦比YOLO v3算法提升了60%。该算法在极大地减少模型参数量和计算量的同时,提高了检测速度和检测精度。  相似文献   

4.
交通标志检测在自动驾驶领域一直是个比较热门的课题。在深度学习算法中,YOLOv3和Faster R-CNN已经获得了极好的目标检测性能,但在检测小目标时,存在漏检的情况。针对交通标志检测中小目标准确快速识别的需求,本文提出一种轻量级YOLOv3的交通标志检测算法。通过卷积神经网络同时使用浅层和深层的特征提取,得到多尺度特征图,深层特征可以有效地保持检测精度不下降,浅层特征可以有效地提高小目标检测任务的精度。通过剪枝算法对模型进行压缩,将训练好的模型进行稀疏训练,把一些不重要的卷积核通道删除掉,对剪枝后的模型微调,保持模型文件中参数的平衡,同时保持检测精度。实验结果表明,通过提取多尺度特征图的方法模型准确率提高了2.3%,通过剪枝算法对模型压缩,使模型的权重大小减小了70%,模型的检测时间节省了90%。由此建立了鲁棒性更强的轻量级交通标志检测模型,可以部署在移动端嵌入式设备上,不再占用庞大的GPU计算资源即可提高检测效率。  相似文献   

5.
针对机械臂自动采摘草莓任务场景提出了一种基于改进YOLOX的草莓检测算法。使用MobileNetV3重新构建YOLOX的主干网;引入ASPP获取多尺度特征,并使用深度可分离卷积取代ASPP中的普通卷积以降低引入ASPP带来的计算量提升;对主干网输出的三个不同尺度特征分别使用ECA注意力机制提高检测精度。实验表明,改进模型的参数量下降了68%,并保证了精度不损失,适于部署到算力较低的边缘设备。  相似文献   

6.
针对传统目标检测方法在对电子元器件进行缺陷检测时存在参数量大、检测效率低的问题,提出了一种基于轻量化YOLOX检测网络的目标检测方法。首先,使用深度可分离卷积对主干网络实现轻量化处理,减少参数量的同时提高检测速度;其次,构建基于空间金字塔的通道注意力模型,对不同尺度特征进行筛选融合,加强小尺寸缺陷的特征权重;在特征融合的采样过程中,加入高效通道注意力,在略微增加参数量的情况下,提升检测精度;最后,采用EIoU损失函数优化IoU损失函数,并使用余弦退火算法来使模型达到最佳检测效果。采用自制的电子元器件外观缺陷数据集进行实验,所提方法的平均检测精度达到98.96%,每幅图像的检测时间大约为0.09 s,与原YOLOX网络相比检测速度提高了一倍,模型大小缩小了约60%,并且在PCB瑕疵公共数据集上进行了验证,结果表明所提方法实现了目标缺陷的快速检测。  相似文献   

7.
山坡地区是落石频发的区域,凭人力难以及时发现灾害的发生。为及时检测到落石的发生并做出应对措施,提出一种基于改进YOLOX的落石检测方法,自动检测并报告落石的发生情况;通过自制落石数据集训练YOLOX网络,优化空间金字塔池化结构,获取更多语义信息,并引入ECA-Net(Efficient Channel Attention Module,高效通道注意力模块),提高特征的提取能力和特征间的信息传播,同时改进损失函数并使用数据增强,提高网络训练效果;实验结果表明,改进YOLOX算法的mAP@0.5为92.50%,每秒检测帧数为62.6,相较于YOLOX算法,mAP@0.5提高3.45%,每秒检测帧数上涨0.3;与原算法相比,在不损失性能的情况下,精度有较大的提升,同时满足图片与视频数据的实时检测要求。  相似文献   

8.
针对现存交通标志识别模型参数量过大、检测速度慢和检测精度较低的问题,本文提出一种改进YOLOv4-tiny的交通标志识别算法.该算法将深度可分离卷积应用到YOLOv4-tiny的特征提取网络中,显著降低了主干网络的参数量和计算量.在特征融合阶段,将特征提取网络得到的不同层次特征图输入双向特征金字塔网络结构(BiFPN)中进行多尺度特征融合.最后,在损失函数设计过程中,使用Focal损失函数代替二分交叉熵损失函数,使检测过程中的正负样本数量不均衡问题得以解决.在TT100K数据集上的测试结果表明,该算法的平均精度均值达到87.5%,相比于YOLOv4-tiny提升了3.9%,模型大小为14MB,仅为YOLOv4-tiny的58%.该算法一定程度上减少了计算量和模型大小,并带来了检测速度和精度的提升.  相似文献   

9.
针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络,降低了模型参数量和计算量,提高目标检测实时性;其次为了弥补轻量化带来的检测精度下降,考虑检测目标框的长宽比引入CIOU定位损失函数,提升目标定位的精度;同时为了平衡训练过程中的正负难易样本,引入Focal Loss置信度损失函数提升模型的检测性能;基于VisDrone2019-DET数据集实验表明,改进后算法模型参数量降低了56.2%,计算量降低了52.5%,在检测精度没有明显下降情况下单张图片推理时间减少了41.4%;最后,将改进后的算法部署到Nvidia Jetson Xavier NX机载端,测得模型检测帧率可达22FPS,改进后算法满足巡逻任务的应用需求。  相似文献   

10.
在真实场景下准确实时检测小目标交通标志对自动驾驶有重要意义,针对YOLOv5算法检测小目标交通标志精度低的问题,提出一种基于改进YOLOv5的小目标交通标志实时检测算法。借鉴跨阶段局部网络思想,在YOLOv5的空间金字塔池化上设置新的梯度路径,强化特征提取能力;在颈部特征融合中增设深、浅卷积特征的可学习自适应权重,更好地融合深层语义和浅层细节特征,提高小目标交通标志的检测精度。为验证所提算法的优越性,在TT100K交通标志数据集上进行了实验验证。实验结果表明所提算法在小目标交通标志上的平均精度均值(mean average precision,mAP)为77.3%,比原始YOLOv5提升了5.4个百分点,同时也优于SSD、RetinaNet、YOLOX、SwinTransformer等算法的检测结果。所提算法的运行速度为46.2 frame/s,满足检测实时性的要求。  相似文献   

11.
由于交通场景中的行人目标所处的背景环境复杂、目标较小等因素,使得目前的行人检测算法在实际应用中存在检测精度不高、检测速度较慢的问题.因此行人检测模块作为高级辅助驾驶系统的核心模块,一直以来都是目标检测的研究热点之一.针对交通场景中小尺度行人目标,将传统的SSD网络结构中的主干网络卷积层结合Inception模块中的稀疏...  相似文献   

12.
针对目前交通标志的识别都是基于操作系统之上,无法做到自主可控、稳定可靠的问题,故提出一种基于微控制器卷积神经网络交通标志识别。考虑到微控制器内存及计算速度,研究采用改进SqueezeNet网络模型结构,将PC训练机训练好的各种交通标志权值矩阵文件缩小了50倍,移植到前端Cortex-M核系列开发板上;利用内嵌的CMSIS-NN网络函数库搭建与训练机相同的网络模型结构实现对标志的快速识别。实验结果表明,基于微控制器改进SqueezeNet交通标志识别方法平均识别率达到97.4%以上,识别速度得到了有效的提高, 同时为智慧交通的标志识别提供了一种可选择方案。  相似文献   

13.
为了提高对中小占比手势识别的准确性与稳定性,提出了一种多尺度卷积特征融合的SSD(single shot multibox detector)手势识别方法。该方法突出表现在两大方面,其一,在原始的SSD算法的多尺度卷积检测方法基础上,引入了不同卷积层的特征融合思想,经过空洞卷积下采样操作与反卷积上采样操作,实现网络结构中的浅层视觉卷积层与深层语义卷积层的融合,代替原有的卷积层用于手势识别,以提高模型对中小目标手势的识别精度;其二,为了解决正负样本不均衡导致分类性能差的问题,提出一种改进的损失函数,以提升模型对目标手势的分类能力。在手势识别公开的数据集上的实验结果表明,与SSD和Faster R-CNN等识别方法相比,能够在保持较高的手势检测精度的同时,又具有较好的鲁棒性与检测速度。  相似文献   

14.
针对交通标志检测存在误检率高、鲁棒性差等问题,提出了一种改进SSD(single shot multibox detector)的交通标志检测方法。首先从不同维度提取交通标志的位置和方向感知信息,改善目标在浅层特征图上的感受野区域。其次使用特例化的卷积内核对深层特征图进行条件参数卷积,增强交通标志的特征表达能力。最后对通道注意力机制进行改进,在特征通道中融入目标空间信息,提升交通标志目标的显著性。实验结果表明,提出的方法相较于原始SSD在CCTSDB数据集上的检测精度提升了7.6个百分点,检测速度达到87.5 FPS;在LISA数据集上的平均准确率为94.6%,检测速率为85.0 FPS。相比于其他的检测方法,改进后的SSD算法在复杂的自然场景中对交通标志具有更好的鲁棒性。  相似文献   

15.
考虑到基于深度学习的恶意域名检测方法计算开销大,难以有效应用于真实网络场景域名检测实际,设计了一种基于可分离卷积的轻量级恶意域名检测算法。该模型使用可分离卷积结构,能够对卷积过程中的每一个输入通道进行深度卷积,然后对所有输出通道进行逐点卷积,在不减少卷积特征提取效果的情况下,有效减少卷积过程的参数量,实现更加快速的卷积过程并不降低模型的准确性。同时,为了减轻模型训练过程中正负样本数量不平衡与样本难易程度不平衡的情况对模型分类准确率的影响,引入了一种聚焦损失函数。所提算法在公开数据集上与 3 种典型的基于深度神经网络的检测模型进行对比,实验结果表明,算法能够达到与目前最优模型接近的检测准确率,同时能够显著提升在CPU上的模型推理速度。  相似文献   

16.
基于多纵卷积神经网络的交通标志识别算法识别率较高,但识别和训练时间较长,实用性较差。为此,构造一种基于多尺度卷积神经网络的道路交通标志识别模型。通过改进单尺度卷积神经网络中特征提取的基网络,将网络不同层级所产生的特征融合为多尺度特征并提供给分类器,以提高低层特征的利用率。在GTSRB数据集上的实验结果表明,该模型准确识别率达到99.25%,与多纵卷积神经网络模型相比,其在保证高精度的同时,识别和训练时间的降幅均超过90%,更适用于真实路况下交通标志的精准检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号