首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cenozoic deformation within the Tien Shan of central Asia has accommodated part of the post-collisional indentation of the Indian plate into Asia. Within the Urumgi—Korla region of the Chinese Tien Shan this occurred dominantly on thrusts, with secondary strike-slip faulting. The gross pattern of deformation is of moderate to steeply dipping thrusts that have overthrust foreland basins to the north and south of the range, the Junggar and Tarim basins, respectively. Smaller foreland basins lie within the margins of the range itself (Turfan, Chai Wo Pu, Korla and Qumishi basins); these lie in the footwalls of local thrust systems. Both the Turfan and the Korla basins contain major thrusts within them; they are complex foreland basins. Deformation has progressively affected regions further into the interior of the Junggar Basin, and propagated into the interiors of the intermontane basins. No unidirectional deformation front has passed across the Tien Shan in the Neogene and Quaternary. An Oligocene unconformity may indicate the time of the onset of the Cenozoic deformation, but most of the Cenozoic molasse has been deposited after the Palaeogene. The rate of deposition in basins next to the uplifted ranges has increased since the onset of deformation. There has been at least about 80 km of Cenozoic shortening across this part of the Tien Shan. Cenozoic shortening is greater in sections of the range further west; these are nearer to the northern margin of the Indian indenter. Cenozoic compression has reactivated structures created by the two late Palaeozoic collisions that created the ancestral Tien Shan. These Palaeozoic structures have exerted a strong control over the style and location of the Cenozoic deformation.  相似文献   

2.
According to GPS monitoring, recent tectonic process between Tarim and West Siberia in the band within 80°–95° E is generated by the northward movement of the Tarim block. During the accompanying horizontal compression of the area, orogeny takes place within linear mobile zones when blocks are squeezed into the upper half-space. When the orientation of the mobile zones is transverse to the compression direction, the leading orogenic process is reverse faulting. When these directions intersect at an acute angle, the principal features of the mountain relief are formed by oblique-slip and strike-slip faults.The spatial distribution of seismic activity A10 over a 40-year period of instrumental observations within the mobile zones of the study area is extremely nonuniform. Seismic activity increases to the south, toward the source of deformations—the Indo-Eurasian collision. The maximum activity is observed at the reverse-fault boundaries of the eastern Tien Shan (~ 40). The seismic activity of the strike-slip fault boundaries of the Great Altai is considerably lower (0.11–0.16).  相似文献   

3.
4.
Geodynamics of late Paleozoic magmatism in the Tien Shan and its framework   总被引:1,自引:0,他引:1  
The Devonian-Permian history of magmatic activity in the Tien Shan and its framework has been considered using new isotopic datings. It has been shown that the intensity of magmatism and composition of igneous rocks are controlled by interaction of the local thermal upper mantle state (plumes) and dynamics of the lithosphere on a broader regional scale (plate motion). The Kazakhstan paleocontinent, which partly included the present-day Tien Shan and Kyzylkum, was formed in the Late Ordovician-Early Silurian as a result of amalgamation of ancient continental masses and island arcs. In the Early Devonian, heating of the mantle resulted in the within-plate basaltic volcanism in the southern framework of the Kazakhstan paleocontinent (Turkestan paleoocean) and development of suprasubduction magmatism over an extensive area at its margin. In the Middle-Late Devonian, the margins of the Turkestan paleoocean were passive; the area of within-plate oceanic magmatism shifted eastward, and the active margin was retained at the junction with the Balkhash-Junggar paleoocean. A new period of active magmatism was induced by an overall shortening of the region under the settings of plate convergence. The process started in the Early Carboniferous at the Junggar-Balkhash margin of the Kazakhstan paleocontinent and the southern (Paleotethian) margin of the Karakum-Tajik paleocontinent. In the Late Carboniferous, magmatism developed along the northern boundary of the Turkestan paleoocean, which was closing between them. The disappearance of deepwater oceanic basins by the end of the Carboniferous was accompanied by collisional granitic magmatism, which inherited the paleolocations of subduction zones. Postcollision magmatism fell in the Early Permian with a peak at 280 Ma ago. In contrast to Late Carboniferous granitic rocks, the localization of Early Permian granitoids is more independent of collision sutures. The magmatism of this time comprises: (1) continuation of the suprasubduction process (I-granites, etc.) with transition to the bimodal type in the Tien Shan segment of the Kazakhstan paleocontinent that formed; (2) superposition of A-granites on the outer Hercynides and foredeep at the margin of the Tarim paleocontinent (Kokshaal-Halyktau) and emplacement of various granitoids (I, S, and A types, up to alkali syenite) in the linear Kyzylkum-Alay Orogen; and (3) within-plate basalts and alkaline intrusions in the Tarim paleocontinent. Synchronism of the maximum manifestation and atypical combination of igneous rock associations with spreading of magmatism over the foreland can be readily explained by the effect of the Tarim plume on the lithosphere. Having reached maximum intensity by the Early Permian, this plume could have imparted a more distinct thermal expression to collision. The localization of granitoids in the upper crust was controlled by postcollision regional strike-slip faults and antiforms at the last stage of Paleozoic convergence.  相似文献   

5.
Teleseismic tomography across the Chinese Tien Shan shows that seismic wave speeds in the lithosphere beneath central Tien Shan are high and therefore the lithosphere is not weaker than that beneath the adjacent undeformed Tarim and Junggar basins. There is evidence for significant velocity contrasts within the lithosphere that are presumably inherited from the Palaeozoic collision history. The high-velocity, thick Yili block observed underneath the northern Tien Shan is a clue for shortening by a intracontinental subduction. The observed geometry is consistent with a simple model of intracontinental subduction and suggests that, during orogeny, the lithosphere has remained heterogeneous and has deformed along existing planes of weakness rather than by homogeneous thickening of a particularly weak lithosphere.  相似文献   

6.
Apatite fission-track (AFT) thermochronological modeling as a diagnostic tool for periods of stability (peneplanation) and tectonic activity (orogeny) has been broadly used in tectonic studies of Central Asia in recent years. We discuss more than 100 AFT ages of samples from the Kyrgyz Tien Shan and Altai and compare them with AFT data from northern Kazakhstan. Geological, geomorphological, and AFT data indicate intense activity in the Late Cenozoic Eurasian continental interior. The impact from the India-Eurasia collision on the northern Tien Shan, Altai, and northern Kazakhstan regions showed up at 11, 5, and 3 Ma, respectively, as a result of stress propagation into the continent, with the ensuing reactivation and mountain growth. We hypothesize that a distant effect of the Late Cenozoic India-Eurasia collision was to rejuvenate Paleozoic fault zones and to deform the Mesozoic sedimentary cover north of the collision front as far as the West Siberian Plate. The reactivation facilitated formation of tectonic oil and gas traps. The activity in northern Central Asia under the effect of the Indian indentation into Eurasia appears to continue and may evolve to include uplift of southern West Siberian plate with uplift.  相似文献   

7.
Lake Issyk-Kul occupies a large Late Mesozoic–Cenozoic intramontane basin between the mountain ranges of the Northern Kyrgyz Tien Shan. These ranges are often composed of granitoid basement that forms part of a complex mosaic assemblage of microcontinents and volcanic arcs. Several granites from the Terskey, Kungey, Trans-Ili and Zhetyzhol Ranges were dated with the zircon U/Pb method (SHRIMP, LA-ICP-MS) and yield concordant Late Ordovician–Silurian (~ 456–420 Ma) emplacement ages. These constrain the “Caledonian” accretion history of the Northern Kyrgyz Tien Shan in the amalgamated Palaeo-Kazakhstan continent. The ancestral Tien Shan orogen assembled in the Early Permian when final closure of the Turkestan Ocean ensued collision of Palaeo-Kazakhstan and Tarim. A Late Palaeozoic structural basement fabric formed and Middle–Late Permian post-collisional magmatism added to crustal growth of the Tien Shan. Permo‐Triassic cooling (~ 300–220 Ma) of the ancestral Tien Shan was unraveled using 40Ar/39Ar K-feldspar and titanite fission-track (FT) thermochronology on the Issyk-Kul granitoids. Apatite thermochronology (FT and U–Th–Sm/He) applied to the broader Issyk-Kul region elucidates the Meso-Cenozoic thermo-tectonic evolution and constrains several tectonic reactivation episodes in the Jurassic, Cretaceous and Cenozoic. Exhumation of the studied units occurred during a protracted period of intracontinental orogenesis, linked to far-field effects of Late Jurassic–Cretaceous accretion of peri-Gondwanan blocks from the Tethyan realm to Eurasian. Following a subsequent period of stability and peneplanation, incipient building of the modern Tien Shan orogen in Northern Kyrgyzstan started in the Oligocene according to our data. Intense basement cooling in distinct reactivated and fault-controlled sections of the Trans-Ili and Terskey Ranges finally pinpoint important Miocene–Pliocene (~ 22–5 Ma) exhumation of the Issyk-Kul basement. Late Cenozoic formation of the Tien Shan is associated with ongoing indentation of India into Eurasia and is a quintessential driving force for the reactivation of the entire Central Asian Orogenic Belt.  相似文献   

8.
Through analysis of seismic ambient noise recorded by the GHENGIS array, we constructed a high‐resolution 3‐D crustal shear‐wave velocity model for the central Tien Shan. The obtained shear‐wave velocity model provides insight into the detailed crustal structure beneath the Tien Shan. The results obtained at shallow depths are well correlated with known subsurface geological features. Low velocities are found mainly beneath sedimentary basins, whereas high velocities are mainly associated with mountain ranges. At greater depths of ~43–45 km, high velocities were observed beneath the Tarim Basin and Kazakh Shield; these high velocities extend forward in opposite directions and tilt down towards the central Tien Shan to a depth of in excess of 50 km, most likely reflecting lateral variations in crustal thickness beneath the Tien Shan and surrounding platforms.  相似文献   

9.
L.  V.  A.  V.  G.  E.  G.  V.  A. 《Tectonophysics》2007,431(1-4):143
On the base of the GPS-measured velocity field referring to the recent crust movements over sizable terrestrial areas (Central Tien Shan), the strain rate tensor is evaluated as the tensor components are governed by space gradients of the velocity field. The areas of the extreme values of the strain rate tensor components are shown to coincide with the highest seismic activity areas. Also shown is the fact that, in the direction of the crust surface layer compression, the deep layer electric conductivity reaches its maximum. A simplest explanation of this phenomenon is proposed.  相似文献   

10.
The sections, the map, and the geological analysis of the area show that the uplifts within the large area of the Paleogene-Neogene subsidence had arisen during Anthropogene time, in consequence of a certain tectonic reconstruction of the area. The uplifts appear to be anticlinal folds whose strike tends to follow and even coincide with the strike of the major structures of the Hercynian base. Similar uplifts in tectonically similar environments are found also in northern Tien Shan and elsewhere in central Asia. – IGR Staff.  相似文献   

11.
We discuss strike-slip tectonics as the key agent in the formation of the Early Paleozoic (Caledonian) collisional system of the western Baikal region. This tectonic setting implies existence of local syncompressional extension, with the ensuing conditions for mantle drainage and magmatism. Lower-middle crust collisional complexes exposed in the Olkhon area of the western Baikal region provide a record of synmetamorphic subalkaline-mafic magmatism associated with the early synorogenic collapse of the Olkhon collisional system, a part of the Central Asian collisional-accretionary belt.  相似文献   

12.
13.
《Gondwana Research》2013,24(4):1316-1341
Subduction-related accretion in the Junggar–Balkash and South Tianshan Oceans (Paleo-Asian Ocean), mainly in the Paleozoic, gave rise to the present 2400 km-long Tianshan orogenic collage that extends from the Aral Sea eastwards through Uzbekistan, Tajikistan, Kyrgyzstan, to Xinjiang in China. This paper provides an up-to-date along-strike synthesis of this orogenic collage and a new tectonic model to explain its accretionary evolution.The northern part of the orogenic collage developed by consumption of the Junggar–Balkash Ocean together with Paleozoic island arcs (Northern Ili, Issyk Kul, and Chatkal) located in the west, which may have amalgamated into a composite arc in the Paleozoic in the west and by addition of another two, roughly parallel, arcs (Dananhu and Central Tianshan) in the east. The western composite arc and the eastern Dananhu and Central Tianshan arcs formed a late Paleozoic archipelago with multiple subduction zones. The southern part of the orogenic collage developed by the consumption of the South Tianshan Ocean which gave rise to a continuous accretionary complex (Kokshaal–Kumishi), which separated the Central Tianshan in the east and other Paleozoic arcs in the west from cratons (Tarim and Karakum) to the south. Cross-border correlations of this accretionary complex indicate a general southward and oceanward accretion by northward subduction in the early Paleozoic to Permian as recorded by successive southward juxtaposition of ophiolites, slices of ophiolitic mélanges, cherts, island arcs, olistostromes, blueschists, and turbidites, which are mainly Paleozoic in age, with the youngest main phase being Late Carboniferous–Permian. The initial docking of the southerly Tarim and Karakum cratons to this complicated late Paleozoic archipelago and accretionary complexes occurred in the Late Carboniferous–Early Permian in the eastern part of the Tianshan and in the Late Permian in the western part, which might have terminated collisional deformation on this suture zone. The final stages of closure of the Junggar–Balkash Ocean resembled the small ocean basin scenario of the Mediterranean Sea in the Cenozoic. In summary, the history of the Altaids is characterized by complicated multiple accretionary and collisional tectonics.  相似文献   

14.
The Altaid orogen was formed by aggregation of Paleozoic subduction–accretion complexes and Precambrian basement blocks between the Late Proterozoic and the Early Mesozoic. Because the Altaids are the site of abundant granitic plutonism and host some of the largest gold deposits in the world, understanding their formation has important implications on the comprehension of Phanerozoic crustal growth and metallogeny. In this study, we present the first extensive lead isotope data on magmatic and metasedimentary rocks as well as ore deposits of the southern part of the Altaids, including the Tien Shan (Tianshan) and southern Altay (Altai) orogenic belts. Our results show that each terrane investigated within the Tien Shan and southern Altay is characterized by a distinct Pb isotope signature and that there is a SW–NE Pb isotope gradient suggesting a progressive transition from a continental crust environment in the West (the Kyzylkum and Kokshaal segments of the Southern Tien Shan) to an almost 100% juvenile (MORB-type mantle-derived) crust environment in the East (Altay). The Pb isotope signatures of the studied ore deposits follow closely those of magmatic and metasedimentary rocks of the host terranes, thus supporting the validity of lead isotopes to discriminate terranes. Whereas this apparently suggests that no unique reservoir has been responsible for the huge gold concentration in this region, masking of a preferential Pb-poor Au-bearing reservoir by mixing with Pb-rich crustal reservoirs during the mineralizing events cannot be excluded.  相似文献   

15.
The study of granitic plutons of the Baikal Highland and the Tien Shan has made it possible to establish new features of their posthumous (after incorporation into the consolidated Earth’s crust) structural reworking and to understand the implications of the cataclastic flow for the exhumation of the crystalline basement in the studied regions. It is shown that granitic plutons undergo appreciable structural transformation at the stages of tectonic reactivation that is significantly separated in time from the moment of formation of plutons as geological bodies. The 3D cataclastic deformation is the main mode of structural reworking of granitic plutons, while the cataclastic flow is the main form of their mobility. Newly recognized slice structures characterize the volumetric deformation of granites.  相似文献   

16.
Present status of geologic mapping indicates that there are three major units of Precambrian rocks in Mexico. The oldest (older than 1,700 m. y.) and the youngest (younger than 700 m. y.) are confined to the northwest part of the country. The intermediate unit (1,300-800 m. y.) is distributed in eastern and southern Mexico and extend into northern Guatemala.The rocks making up the oldest unit accumulated as greywackees and associated volcanics in a eugeosyncline prior to 1,700 m. y. ago; this eugeosyncline extended into Mexico from the north-northeast, where it bordered the older Precambrian craton. These rocks underwent metamorphism and anatexis around 1,700 m. y. ago, that produced the development of the amphibolite-granulite facies and the emplacement of granitic stocks and batholiths.A similar history, but somewhat younger, is recorded for the Precambrian rocks in eastern and southern Mexico. These rocks accumulated in the southern continuation of the Grenville Geosyncline as greywackees and volcanics, starting about 1,300 m. y. ago. These rocks underwent metamorphism and anatexis during the interval of 1,000-900 m. y. ago to form the Oaxacan Structural Belt.An event of granitic magmatism, around 700 m. y. ago, is evidenced in the extreme northwest and southeast of Mexico which, heretofore is not recognized in Texas. In the northwest, this was followed by the intrusion of diabase dykes, prior to the deposition of the youngest Precambrian sediments.During latest Precambrian time, in northwest Mexico, an about 2,000 m thick sequence of conglomerate, sandy shale and dolomite, containingCollenia, Cryptozoa and other organisms, accumulated on top of the eroded older Precambrian metamorphics and granitic rocks, that formed the northeast flank of the miogeosynclinal part of the ancestral North American Cordilleran Geosyncline, representing a near-shore facies. These rocks deformed together with the overlying Paleozoic sedimentary rocks at the end of the Paleozoic, during the Sonoran Orogeny.The present abrupt truncation in the west of both the older and youngest Precambrian rocks in northwest Mexico against the Gulf of California, is the result of the combination of late Paleozoic movements along the Texas Lineament and Torreón-Monterrey Fracture Zone, of the regeneration due to Early Jurassic metamorphism and anatexis, and of movements along the late Mesozoic-Tertiary San Andreas Fault System. A similar truncation of the younger Precambrian rocks in southern Mexico against the Pacific Ocean crust, is considered to be result of a combined thrust and left-lateral movement along the Jalisco-Nicoya Fault during medial Tertiary time.
Zusammenfassung Nach dem augenblicklichen Stand der geologischen Kartierung gibt es drei Haupteinheiten präkambrischer Gesteine in Mexiko. Die ältesten (> 1700 M. J.) und die jüngsten (< 700 M. J.) sind auf den Nordwestteil des Landes beschränkt, während die mittlere Einheit (1300-800 M. J.) in Ost- und Südmexiko vorkommt und sich bis nach Nord-Guatemala erstreckt.Die Gesteine der ältesten Serie - Grauwacken und vulkanische Gesteine — wurden vor mehr als 1700 M. J. in einer Eugeosynklinale abgelegt, die nach Mexiko von NNE her hineinreichte, wo sie einen noch älteren Kraton begrenzte. Vor etwa 1700 M. J. wurden diese Gesteine der Metamorphose und Anatexis unterzogen; daraus resultierte die Amphibolit-Granulit-Fazies, die Platznahme von Granitstöcken und Batholiten.Eine ähnliche Geschichte hatten die jüngeren präkambrischen Gesteine Ostund Süd-Mexikos. Hier wurden, beginnend etwa vor 1300 M. J., in der südlichen Fortsetzung der Grenville-Geosynklinale Grauwacken und vulkanische Gesteine abgelagert. Vor 1000-900 M. J. fanden Metamorphose und Anatexis statt, und der Oaxacan-Strukturbogen entstand.Granitischer Magmatismus fand vor etwa 700 M. J. im äußersten Nordwesten Mexikos (ebenfalls südöstlich von Mexiko) statt, der in Texas bisher nicht nachgewiesen wurde. Ihm folgten Diabasintrusionen; nach denen kam es zur Ablagerung jüngster präkambrischer Sedimente.Im jüngsten Präkambrium wurde in NW-Mexiko eine etwa 2000 m mächtige Serie von Konglomeraten, sandigem Tonstein und Dolomit (Collenia, Cryptozoa und andere Organismen enthaltend) abgelagert, und zwar diskordant auf älter präkambrischen metamorphen und granitischen Gesteinen. Sie bildeten in Küstenfazies die Nordostflanke des miogeosynklinalen Teiles der angestammten nordamerikanischen Kordilleren-Geosynklinale. Sie wurden zusammen mit den überlagernden paläozoischen Sedimenten am Ende des Paläozoikums gefaltet (Sonoran-Orogenese).Das heutige plötzliche Aufhören der älteren und der jüngsten präkambrischen Gesteine Nordwest-Mexikos im Westen gegen den Golf von Kalifornien ist das Ergebnis der Kombination von spätpaläozoischen Bewegungen entlang dem Texas-Lineament und der Torreón-Monterrey-Bruchzone (s. Abb. 11), ihrer Regeneration während frühjurassischer Metamorphose bzw. Anatexis und von Bewegung entlang der spätmesozoisch-tertiären San-Andreas-Bewegung. Ein ähnliches Aufhören der jüngeren präkambrischen Gesteine in Süd-Mexiko gegen die Kruste des Pazifiks gilt als das Ergebnis gleichzeitiger Überschiebung und linksseitlicher Seitenverschiebung im mittleren Tertiär entlang der Jalisco-Nicoya-Verwerfung.

Resumen El estado actual de la cartografía geológica indica que existen tres unidades principales de rocas precámbricas en México. La unidad más antigua (más antigua que 1,700 m. a) y la más reciente (más reciente que 700 m. a.) se limitan para la parte noroccidental del país. La unidad intermedia (1,300-800 m. a.) se encuentra en las partes oriental y meridional de México, y se extiende a la parte septentrional de Guatemala.Las rocas, que constituyen la unidad más antigua, se acumularon como grauvacas y rocas volcánicas relacionadas en un eugeosinclinal, antes de 1,700 m. a.; este eugeosinclinal se extendió a México desde el norte-noreste, donde rodeó un cratón precámbrico aún más antiguo. Estas rocas sufrieron metamorfismo y anatexis cerca de 1,700 m. a., procesos que produjeron el desarrollo de la facies de anfibolita-granulita y el emplazamiento de troncos y batólitos graniticos.Una historia similar, aunque algo más reciente, registran las rocas precámbricas en las partes oriental y meridional de México. Estas rocas acumularon en la prolongación meridional del Geosinclinal Grenville, como grauvacas y rocas volcánicas, a partir, hace aproximadamente de 1,300 m. a. Estas rocas pasaron por metamorphismo y anatexis durante el período comprendido entre 1,000 y 900 m. a., para formar la Faja Tectónica Oaxaqueña.Un evento de magmatismo granítico, ocurrido hace cerca de 700 m. a., se manifiesta en los extremos noroccidental y suroriental de México, y el cual aún no se ha identificado en Texas. En el noroeste, este evento fue seguido por la intrusión de diques de diabasa, antes del depósito de los sedimentos precámbricos de los más recientes.Durante el Precámbrico lo más tardío, en el noroeste de México, se acumuló una sequencia de cerca de 2,000 m de espesor, encima de las rocas metamórficas y graníticas precámbricas más antiguas profundamente erosionadas que formaron en flanco nororiental de la parte miogeosinclinal del ancestral Geosinclinal Cordillerano de Norte América; la secuencia consiste en conglomerado, lutita arenosa, y dolomita conCollenia, Cryptozoa, y con otros organismos, representando una facies cercana a la costa.La terminación actual abrupta occidental de las rocas precámbricas más antiguas y las más recientes en el noroeste de México contra el Golfo de California, es el resultado de movimientos paleozoicos tardios a lo largo del Almeamiento de Texas y de la Zona de Fracturamiento Torreón-Monterrey, de la regeneración producida por el rnetamorfismo y anatexis durante el Jurásico Temprano, y de movimientos a lo largo del Sistema de Fallas San Andreas durante el Mesozoico tardío-Terciario. Un truncamiento similar de las rocas precámbricas más recientes en el sur de México contra la corteza del Océano Pacífico, se considera como resultado tanto de movimiento lateral sinistral como de cabalgamiento a lo largo de la Falla Jalisco-Nicoya, durante el Terciario medio.

1 : (h700 ) ( 700 ) - ; (1300-800 ) . — — 1700 , NNE . 1700 , - , . . , 1300 Grenville . 1000-900 n. 700 - ( - ) , . , . NW – 2000 — , ( Collenia, Cryptozoa ). - . . - Terreon-Monterrey (p . 12), - , -- San-Andreas. , Jalisco-Nic.


Publication authorized by the Director of Instituto de Geologia, Universidad Nacional Autónoma de México.  相似文献   

17.
Moraines studied in the Chon-Kyzylsuu River valley (southeastern Lake Issyk-Kul region, Tien Shan) were mobilized during historic and prehistoric large earthquakes. Seismic triggers of moraine mobilization included the M > 8 Kebin earthquake of 1911 and prehistoric events that produced rockslides, landslides, and multiple fault scarps. Rockslides in the Chon-Kyzylsuu basin are located in the hanging wall of the Terskey border thrust fault. The observed deformation results from at least four prehistoric earthquakes in the second half of the Holocene (early 20th century BC, early 11th century BC, middle 8th century BC, and early 2nd century BC), with local shaking intensity I > 7.  相似文献   

18.
The tectonic and geodynamic consequences of the collision between Hindustan and Eurasia are considered in the paper. The tectonic evolution and deformation of Tibet and the Tien Shan in the Late Cenozoic is described on the basis of geological, geophysical, and geodetic data. The factual data and their interpretation, which shed light on the kinematics of the tectonic processes in the lithosphere and the geodynamics of the interaction between the Tien Shan, Tarim, and Tibet are discussed. A geodynamic model of their interaction is proposed.  相似文献   

19.
We present the results of mapping selected cross-sections across the margins of the Chinese Tien Shan, an intracontinental mountain belt that formed in response to the India-Eurasia collision. This belt contains significant lateral variation in topography, structure, and stratigraphy at all scales, and our estimated rates of shortening also reveal a distribution of shortening that varies laterally. At the largest scale, it consists of two major high mountain ranges in the west that merge eastward into a complex, single high mountain belt with several distinct ranges, then separates farther eastward into several low mountain ranges in the south and a single narrow high mountain range in the north. Active fold-and-thrust belts along parts of the north and south flanks of the Tien Shan involve only Mesozoic and Cenozoic sedimentary cover, which varies in both stratigraphy and structure from east to west. The southern fold-and-thrust belt decreases in width and complexity from west to east and ends before reaching Korla. The northern belt begins near the longitude where the southern belt ends, and increases in width and complexity from west to east. Within these two fold-and-thrust belts are both E-W and N-S variations in stratigraphy at the scale of the fold-and-thrust belts and across individual structures. All these variations make it very difficult to generalize either structure or stratigraphy within the Tien Shan or within local areas.

Four maps and cross-sections, two across each of the northern and southern fold-and-thrust belts, imply different magnitudes of shortening. In the eastern part of the northern belt, a cross-section along the southern part of the Hutubi River yields shortening of 6.2 km, and a section to the north across the Tugulu anticline yields shortening of 5.5 km. The two parts of the cross-section cannot be added because the Tugulu anticline lies 20 km west of the Hutubi River, and diminishes greatly in amplitude toward the Hutubi River. In the western part of the northern belt, cross-sections require 4.6 to 5.0 km of shortening at Tuositai and 2.12 to 2.35 km across the Dushanzi anticline. The Tuositai structure lies south of the Dushanzi anticline, but shortening in these two areas also cannot be summed, because they seem to be separated by a N-trending strike-slip fault. In the western part of the southern fold-and-thrust belt, an incomplete cross-section along the Kalasu River suggests shortening of 12.1 to 14.1 km. If the estimated shortening of 6 to 7 km in the Qiulitage anticline, which we did not map, is added, the total shortening in this cross-section would be ~18 to 21 km. To the east, a complete cross-section at Boston Tokar yielded shortening of 10.3 to 13.0 km.

Calculating long-term shortening rates from these four cross-sections is difficult, because the time of initiation of deformation is poorly known. In the Kalasu River area of the southern belt, there is evidence that limited shortening of 2 to 4 km occurred in the early Miocene, if major thickness changes in deposition of conglomerate unit 3b are interpreted to be growth strata. Geological evidence suggests that most of the shortening began in both belts after the beginning of the deposition of the thick conglomerate unit shown as lower Quaternary on Chinese geological maps. Strata within the middle part of these conglomerates were deposited during the growth of the folds. Presence of Equus near the base of similar conglomerates indicates a Quaternary age, but the fossil localities are far from most of our cross-sections, and the contemporaneity of the rocks remains in question. The beginning of conglomerate deposition may be controlled by climate change, and if so, the beginning of conglomerate deposition may be generally contemporaneous throughout the region at ~2.5 Ma. Deformation began at some time after the onset of conglomerate deposition, but this time is not well constrained. Thus we have calculated shortening rates for 2.5, 1.6, and 1.0 Ma that should bracket maximum and minimum slip rates. These calculations yield the following ranges in the northern fold-and-thrust belt: southern Hutubi River = 2.5 to 6.2 mm/yr; Tugulu anticline = 2.1 to 5.5 mm/yr; Tuositai anticline = 1.8–2.0 to 4.6–5.0 mm/yr; and Dushanzi anticline = 0.8 to 2.1–2.4 mm/yr; and in the southern fold-and-thrust belt: Kalasu River = 4.6–5.6 (including the Qiulitage anticline = 7.2–8.4) to 12.1–14.1 (including Qiulitage anticline = 18–21) mm/yr; and at Boston Tokar = 4.1–5.2 to 10.3–13.1 mm/yr. If 2 to 4 km of shortening occurred in the Kalasu River section during early Miocene time, the long-term rates for Quaternary time are 3.2–4.8 (including Qiulitage anticline = 5.6–7.6) to 8.1–12.1 (including Qiulitage anticline = 14–19) mm/yr.

Calculation of the shortening rate across the entire width of the Tien Shan is difficult because of the rapid lateral variations in structure and because of active deformation within the range, which we have not studied. The cross-sections at Boston Tokar in the south and Tuositai in the north lie along the same longitude. Adding the shortening rates in these areas would yield a minimum range (using 2.5 Ma as the initiation time) of 5.7 to 7.2 mm/yr. If deformation began at 1.6 or 1.0 Ma, the range of shortening rates would be 10–11.2 mm/yr to 14.9–18.1 mm/yr, respectively. Because the first indication of structural growth with the mapped areas occurs above the base of the conglomerates at the top of the stratigraphic succession, a minimum shortening rate greater than 5.7 to 7.2 mm/yr is more likely.

Both the marginal fold-and-thrust belts have a thin-skinned geometry with the drcollement at -6 to 10 km and within Mesozoic and Cenozoic sedimentary rocks. Toward the interior of the range the decollement must pass into the Paleozoic basement rocks and steepen beneath the flanks of the range. The structural style is similar to that in the Laramide Rocky Mountains and the California Transverse Ranges. The highest parts of the Tien Shan are adjacent to areas of active shortening. Such a relation might suggest that the major uplift of the Tien Shan is very young, mostly latest Cenozoic or Quaternary in age. The shortening across the Tien Shan is inhomogeneous and spatially distributed.  相似文献   

20.
The results of numerical modelling of deformation of the Earth’s crust along the Tarim–Altai profile caused by the force of gravity and lateral compression using the approximate two-dimensional model of the elastoplastic transition are presented. The conditions of the formation of mountains and their roots were determined taking into account some geological and geophysical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号