首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research.  相似文献   

2.
In the present paper, L-phenyl alanine has been successfully linked on the surface of magnetic nanoparticles and has been characterized by FT-IR, XRD, SEM, EDS, TGA, and VSM techniques. This new catalyst was employed for one-pot synthesis of chromenes through the reaction of aldehydes, 4-hydroxycoumarin, and 2-hydroxynaphthalene-1,4-dione. Significant features of this method are short reaction time, excellent yields, use of green method, and the use of an effective and novel catalyst that could be recovered and reused several times without loss of its catalytic activity.  相似文献   

3.
The authors describe an aptamer-based fluorescent assay for adenosine (Ade). It is based on the interaction between silver nanoparticles (AgNPs) and CdTe quantum dots (QDs). The beacon comprises a pair of aptamers, one conjugated to Fe3O4 magnetic nanoparticles, the other to AgNPs. In the presence of Ade, structural folding and sandwich association of the two attachments takes place. After magnetic separation, the associated sandwich structures are exposed to the QDs. The AgNPs in sandwich structures act as the signaling label of Ade by quenching the fluorescence of QDs (at excitation/emission wavelengths of 370/565 nm) via inner filter effect, electron transfer and trapping processes. As a result, the fluorescence of QDs drops with increasing Ade concentration. The assay has a linear response in the 0.1 nM to 30 nM Ade concentration range and a 60 pM limit of detection. The assay only takes 40 min which is the shortest among the aptamer-based methods ever reported. The method was successfully applied to the detection of Ade in spiked biological samples and satisfactory recoveries were obtained.
Graphical abstract Schematic of a highly efficient and convenient adenosine (Ade) fluorometric assay. It is based on the interaction between Ag nanoparticles (NPs) and CdTe quantum dots (QDs). Ade aptamers (ABA1 and ABA2) are used as recognition unit and Fe3O4 magnetic nanoparticles act as magnetic separator. The assay exhibits superior sensitivity and speediness.
  相似文献   

4.
5.
6.
In this paper, magnetic chitosan microspheres were prepared by the emulsification cross-linking technique, with glutaraldehyde as the cross-linking agent, liquid paraffin as the dispersant, and the Span-80 as emulsifier. The time of cross-linking and the ratio of Co0.5Ni0.5Fe2O4/chitosan were investigated. The morphology was studied by different instruments. The adsorption performance was investigated and the effects of initial concentration of methyl orange, the time of cross-linking, and the amount of adsorbent were discussed. It is found that the product has uniform morphology when the ratio of magnetic Co0.5Ni0.5Fe2O4/chitosan is 1 : 2 and the time of cross-linking is 5 h; At room temperature, magnetic Co0.5Ni0.5Fe2O4–chitosan has a good adsorption toward methyl orange when the magnetic Co0.5Ni0.5Fe2O4/chitosan dosage is 20 mg.  相似文献   

7.
A pyridinecarboxaldimine grafted to silica-coated magnetic nanoparticles was prepared. The structure and magnetic properties of the functionalized magnetic silica nanoparticles were identified by TEM, FT-IR, XRD, elemental analysis, and vibrating sample magnetometer (VSM). The supported pyridinecarboxaldimine as chelating ligand in combination with CuBr2 and 2,2,6,6-tetramethyl-1-piperadoxyl (TEMPO) exhibited efficient catalytic performance in the aerobic oxidation of primary alcohols to aldehydes. The functionalized magnetic silica nanoparticles could be easily recovered using an external magnetic field and reused for at least 6 times with low reduction in its performance in the aerobic oxidation of benzyl alcohol.  相似文献   

8.
Hybrid nanoparticles based on Fe3O4 and CdS combining magnetic and luminescence properties were synthesized. The possibility of visualization of various cells by 3-mercaptopropylsilane-modified CdS nanoparticles and hybrid nanoparticles based on them using a confocal microscope was demonstrated. The synthesized materials did not show a clear-cut cytotoxicity.  相似文献   

9.
We report on the synthesis of Fe3O4@SiO2 nanoparticles incorporated poly(divinylbenzene) monolithic column via in situ polymerization. The monolith had larger specific surface area and relatively uniform porous structure and was characterized by scanning electron microscopy, nitrogen adsorption–desorption, and Fourier transform infrared spectroscopy. The monolith was then applied for the evaluation of gas chromatography separation properties. Here, an electromagnetic induction heating technique was employed to control the column temperature with the thermal effect of eddy current in ferromagnetic materials Fe3O4. The monolith offered good separation efficiency for benzene and toluene and a higher column efficiency was obtained up to 4481 and 9216 plates per meter, respectively. In addition, the injection volume and column capacity of the proposed system are as much as 5 µL and 100 ng. This makes it possible to use a UV detector. The fabricated Fe3O4@SiO2 nanoparticles incorporated poly(divinylbenzene) monolithic column has been shown to be very promising for gas chromatography separation.

Graphical Abstract

  相似文献   

10.
This investigation examines the magnetorheological (MR) characteristics of Fe3O4 aqueous suspensions. Magnetite particles (Fe3O4) were synthesized using a colloidal process and their sizes were determined to be normally distributed with an average of 10 nm by TEM. Experimental results reveal that the MR effect increases with the magnetic field and suspension concentration. The yield stress increases by up to two orders of magnitude when the sample is subjected to a magnetic field of 146 Oe/mm. In comparison with other published results, concerning a concentration of approximately 10–15% v/v, this study demonstrates that the same increase can be obtained with a concentration of nano-scale particles as low as 0.04% by volume. The viscosity was increased by an order of magnitude while the shear rate remained low; however, the increase decayed rapidly as the shear rate was raised. Finally, the MR effect caused by DC outperformed that caused by AC at the same current.  相似文献   

11.
The interaction between stabilizers and nanoparticles is one of the important factors to prepare stable magnetic fluids. The magnetic nano-size Fe3O4 core with single domain and the average grain size around 8–12 nm were prepared by chemical precipitation method. The O/Fe molar ratio of the particle surface was measured by X-ray photoelectron spectroscopy (XPS). The heat effects of stabilizers adsorption on nanoparticles were measured by solution calorimetry. The excess amount of oxygen was possibly the result of the hydroxygen formed on the surface of the nanoparticles. The heat effects showed that compounds containing carboxyl groups can be adsorbed chemically on magnetite by forming chemical bonds. The other stabilizers involving NH-groups, such as polyethylene-imine, can be adsorbed physically. The exothermic value is about half of the former case. Supported by the National Natural Science Foundation of China (Grant No. 50476039), and Guangdong Provincial Department of Science and Technology (Grant No. 2004A10-703001)  相似文献   

12.
In this work, we report the synthesis of magnetic sulfur-doped Fe3O4 nanoparticles (Fe3O4:S NPs) with a novel simple strategy, which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe3O4:S NPs exhibit a much better adsorption performance towards Pb(II) than bare Fe3O4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(II) by Fe3O4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis, and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(II) adsorption. Thus, Fe3O4:S NPs are supposed to be a good adsorbents for Pb(II) ions in environmental remediation.  相似文献   

13.
Adsorption characteristics and doxycycline (DC) removal efficiency of Fe3O4 magnetic nanoparticles as adsorbents have been determined by investigating the effects of pH, concentration of the DC, amount of adsorbents, contact time, ionic strength and temperature. The mechanism of adsorption was also studied. The adsorption of DC to the Fe3O4 magnetic nanoparticles could be described by Langmuir-type adsorption isotherms. Short contact time between the reagents, reusability of Fe3O4 for three times after recycling of the nanoparticles, good precision and accuracy, wide working pH range and high breakthrough volume are among the highlights of this procedure. The proposed extraction and determination procedure based on magnetic nanoparticles as adsorbent was successfully applied to the determination of DC spiked in honey and various water samples. The method presented here is fast, simple, cheap and robust, and it does not require the use of organic solvents. Also, the method needs only a magnet and can be performed in any laboratory without sophisticated equipment.  相似文献   

14.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

15.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   

16.
In this work, paramagnetic Fe3O4/SiO2 nanoparticles were synthesized, characterized and functionalized with dioxo-Mo(VI) tetradentate Schiff base complex and characterized using IR spectroscopy, X-ray powder diffraction spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, diffuse reflectance spectroscopy and atomic absorption spectroscopy. Catalyst was used for the selective epoxidation of cyclooctene, cyclohexene, styrene, indene, α-pinene, 1-hepten, 1-octene, 1-dodecen and trans-stilbene using tert-butyl hydroperoxide as oxidant in 1,2-dichloroethane. This catalyst is efficient for oxidation of cyclooctene with a 100% selectivity for epoxidation with 100% conversion in 1 h. After the reaction, the magnetic nanocatalyst was easily separated by simply applying an external magnetic field and was used at least five successive times without significant decrease in conversion.
  相似文献   

17.
Peculiarities of electrochemical behavior of the Fe3O4 magnetic nanoparticles immobilized on the surface of a platinum electrode in aprotic organic media were investigated. Possible scheme of electrochemical behavior of nanoparticles depending on pre-electrolysis potential (–1.3,–2.5 V) was suggested. The effect of pre-electrolysis time, potential scan rate and nature of supporting electrolyte on the processes investigated was determined. A linear dependence of electrochemical oxidation signal versus the concentration of nanoparticles in modifying suspension in the concentration range of 0.05—0.5 g L–1 was observed. The results of the performed research allow using magnetite nanoparticles as a direct signal-generating label in electrochemical immunoassay.  相似文献   

18.
The authors describe the synthesis of a multifunctional nanocomposite with an architecture of type Fe3O4@SiO2@graphene quantum dots with an average diameter of about 22 nm. The graphene quantum dots (GQDs) were covalently immobilized on the surface of silica-coated magnetite nanospheres via covalent linkage to surface amino groups. The nanocomposite displays a strong fluorescence (with excitation/emission peaks at 330/420 nm) that is fairly selectively quenched by Hg2+ ions, presumably due to nonradiative electron/hole recombination annihilation. Under the optimized experimental conditions, the linear response to Hg2+ covers the 0.1 to 70 μM concentration range, with a 30 nM lower detection limit. The high specific surface area and abundant binding sites of the GQDs result in a good adsorption capacity for Hg2+ (68 mg?g?1). The material, due to its superparamagnetism, can be separated by using a magnet and also is recyclable with EDTA so that it can be repeatedly used for simultaneous detection and removal of Hg2+ from contaminated water.
Graphical abstract A schematic view of preparation process for the Fe3O4@SiO2@graphene quantum dots nanocomposite (denoted as Fe3O4@SiO2@GQDs). The graphene quantum dots were covalently immobilized on the surface of silica-coated magnetite nanospheres (Fe3O4@SiO2) via covalent linkage to surface amino groups.
  相似文献   

19.
Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition.  相似文献   

20.
The authors describe double-shell magnetic nanoparticles functionalized with 2-mercaptobenzothiazole (MBT) to give nanospheres of the type MBT-Fe3O4@SiO2@C). These are shown to be viable and acid-resistant adsorbents for magnetic separation of the heavy metal ions Ni(II), Cu(II) and Pb(II). MBT act as a binding reagent, and the carbon shell and the silica shell protect the magnetic core. Following 12 min incubation, the loaded nanospheres are magnetically separated, the ions are eluted with 2 M nitric acid and then determined by inductively coupled plasma-mass spectroscopy. The limits of detection of this method are 2, 82 and 103 ng L ̄1 for Ni(II), Cu(II), and Pb(II) ions, respectively, and the relative standard deviations (for n = 7) are 6, 7.8, and 7.4 %. The protocol is successfully applied to the quantitation of these ions in tap water and food samples (mint, cabbage, potato, peas). Recoveries from spiked water samples ranged from 97 to 100 %.
Graphical abstract Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C were synthesized. Then applied for magnetic solid phase extraction of Ni(II), Cu(II) and Pb(II) from water and food samples with LOD of 0.002, 0.082 and 0.103 μg L?1 respectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号