首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The crystal structure of mangan-neptunite, a manganese analogue of neptunite, has been refined in two space groups (Cc and C2/c). The mineral is monoclinic, with the correct space group Cc; the unit-cell dimensions are: a = 16.4821(6), b = 12.5195(4), c = 10.0292(3) Å, β = 115.474(1)°, and V = 1868.31 Å3. The crystal structure has been refined to R 1 = 0.0307 (wR 2 = 0.0901) on the basis of 4892 observed reflections with |F hkl | ≥ 4σ|F hkl |. The most plausible acentric model is caused by the Ti- and (Fe, Mn, Mg)-ordering in the structure. Ti-octahedrons are strongly distorted and consist of short bond Ti-O (1.7 Å), one long bond (2.2 Å), and four equal bonds (2.0 Å). Fe-octahedrons are regularly shaped, with all Fe-O bonds being approximately identical.  相似文献   

2.
A new superstructure was found in bafertisite [(Ba0.98Na0.02)1.00(Fe1.71Mn0.26Mg0.01)1.98 TiO[(Si1.82Ti0.04Al0.03Cr0.01)1.90O7](OH1.40F0.53Cl0.03)1.96] from Donghai County, Jiangsu Province, China. The occurrence of the superstructure reflections were observed by single crystal diffraction using a SMAR APEX CCD. The a*, b*and c* axis directions revealed extra weak reflection spots of the superstructure. The apparent 2a, 2b and 2c superstructure is monoclinic with unit cell a=10.6502(15)?, b=13.7233(19)?, c=21.6897(3)?, α=90o, β=94.698(3)o, γ=90o,space group Cm,Z=16. If c* extra weak reflections are ignored, the secondary supercell gave a cell a=10.6548(15)?, b=13.7284(19)?, c=11.6900(17)?, α=90o, β=112.322(28)o, γ=90o,space group Cm,Z=8. The basic subcell was obtained by ignoring all extra weak reflection spots and gave: a=5.3249(17)?, b=6.8669(22)?, c=10.8709(36)?, α=90o, β=94.740(62)o, γ=90o,space P21/m,Z=2. The superstructure has been refined to R = 0.063 for 7805 [R(int) = 0.0266] unique reflections I>2δ(I). The structure consists of an octahedra (O) sheet sandwiched between two heteropolyhedral (H) sheets. These sheets consist of Ti–octahedra and twin tetrahedral disilicate groups [Si2O7]. The O sheet comprises (Fe,Mg)O4 octahedra. The large Ba cation is located in the interlayer area. The refined structure shows Fe, Mg are partly ordered. The shifting of the TiO6 octahedron and SiO4 tetrahedron sites in the sheet may be a consequence of the superstructure.  相似文献   

3.
氟碳铈钡矿(Cebaite)的新资料   总被引:1,自引:0,他引:1       下载免费PDF全文
氟碳铈钡矿产于白云鄂博铁铌稀土矿床中。1965年发现于西矿区。贵阳地球化学所稀有矿物研究组(1972)和彭志忠、沈今川等(1980)及后来李方华等对该矿物进行了矿物学研究。本文报道了采自东矿区几个样品的分析测定结果。 一号氟碳铈钡矿(样品编号:东1606),产于东矿体靠近上盘的钠辉石型矿石中,与钠辉石、萤石、重晶石等矿物共生,矿物呈粒状或板状,大小不一,集合体大者直径可达数毫米。  相似文献   

4.
The crystal structure of a new compound Zn(SeO4)(H2O)2 (orthorhombic, Pbca, a = 9.0411(13), b = 10.246(2), c = 10.3318(15) Å, V = 957.1(3) Å3) has been solved by direct methods and refined to R 1 = 0.033 on the basis of 1076 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure contains one independent Zn2+ cation coordinated by two water molecules and four oxygen atoms of selenate group. The only independent (SeO4)2? tetrahedral oxoanion is tetradentate, sharing its corners with four adjacent [Zn2+O2(H2O4)]2+ octahedrons. The structure can be described as consisting of heteropolyhedral sheets parallel to the (001) plane and linked together into a three-dimensional network. The compound belongs to the variscite structure type and is the first structurally characterized selenate of this group.  相似文献   

5.
6.
Oxyphlogopite is a new mica-group mineral with the idealized formula K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2. The holotype material came from a basalt quarry at Mount Rothenberg near Mendig at the Eifel volcanic complex in Rhineland-Palatinate, Germany. The mineral occurs as crystals up to 4 × 4 × 0.2 mm in size encrusting cavity walls in alkali basalt. The associated minerals are nepheline, plagioclase, sanidine, augite, diopside, and magnetite. Its color is dark brown, its streak is brown, and its luster is vitreous. D meas = 3.06(1) g/cm3 (flotation in heavy liquids), and D calc = 3.086 g/cm3. The IR spectrun does not contain bands of OH groups. Oxyphlogopite is biaxial (negative); α = 1.625(3), β = 1.668(1), and γ = 1.669(1); and 2V meas = 16(2)° and 2V calc = 17°. The dispersion is strong; r < ν. The pleochroism is medium; X > Y > Z (brown to dark brown). The chemical composition is as follows (electron microprobe, mean of 5 point analyses, wt %; the ranges are given in parentheses; the H2O was determined using the Alimarin method; the Fe2+/Fe3+ was determined with X-ray emission spectroscopy): Na2O 0.99 (0.89–1.12), K2O 7.52 (7.44–7.58), MgO 14.65 (14.48–14.80), CaO 0.27 ((0.17–0.51), FeO 4.73, Fe2O3 7.25 (the range of the total iron in the form of FeO is 11.09–11.38), Al2O3 14.32 (14.06–14.64), Cr2O3 0.60 (0.45–0.69), SiO2 34.41 (34.03–34.66), TiO2 12.93 (12.69–13.13), F 3.06 (2.59–3.44), H2O 0.14; O=F2 −1.29; 99/58 in total. The empirical formula is (K0.72Na0.14Ca0.02)(Mg1.64Ti0.73Fe0.302+ Fe0.273+Cr0.04)Σ2.98(Si2.59Al1.27Fe0.143+ O10) O1.20F0.73(OH)0.07. The crystal structure was refined on a single crystal. Oxyphlogopite is monoclinic with space group C2/m; the unit-cell parameters are as follows: a = 5.3165(1), b = 9.2000(2), c = 10.0602(2) ?, β = 100.354(2)°. The presence of Ti results in the strong distortion of octahedron M(2). The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) [hkl]] are as follows: 9.91(32) [001], 4.53(11) 110], 3.300(100) [003], 3.090(12) [112], 1.895(21) [005], 1.659(12) [−135], 1.527(16) [−206, 060]. The type specimens of oxyphlogopite are deposited at the Fersman Mineralogical Museum in Moscow, Russia; the registration numbers are 3884/2 (holotype) and 3884/1 (cotype).  相似文献   

7.
The thermal response of the natural ferroan phlogopite-1M, K2(Mg4.46Fe0.83Al0. 34Ti0.22)(Si5.51Al2. 49)O20[OH3.59F0.41] from Quebec, Canada, was studied with an in situ neutron powder diffraction. The in situ temperature conditions were set up at ?263, 25, 100°C and thereafter at a 100°C intervals up to 900°C. The crystal structure was refined by the Rietveld method (R p=2.35–2.78%, R wp=3.01–3.52%). The orientation of the O–H vector of the sample was determined by the refinement of the diffraction pattern. With increasing temperature, the angle of the OH bond to the (001) plane decreased from 87.3 to 72.5°. At room temperature, a = 5.13 Å, b = 9.20 Å, c = 10.21 Å, β = 100.06° and V(volume) = 491.69 Å3. The expansion rate of the unit cell dimensions varied discontinuously with a break at 500°C. The shape of the M-octahedron underwent some significant changes such as flattening at 500°C. At temperatures above 500°C, the octahedral thickness and mean distance was decreased, while the octahedral flattening angle increased. Those results were attributed to the Fe oxidation and dehydroxylation processes. The dehydroxylation mechanism of the ferroan phlogopite was studied by the Fourier transform infrared spectroscopy (FTIR) after heated at temperatures ranging from 25 to 800°C with an electric furnace in a vacuum. In the OH stretching region, the intensity of the OH band associated with Fe2+(N B-band) begun to decrease outstandingly at 500°C. The changes of the IR spectra confirmed that dehydroxylation was closely related to the oxidation in the vacuum of the ferrous iron in the M-octahedron. The decrease in the angle of the OH bond to the (001) plane, with increasing temperature, might be related to the imbalance of charge in the M-octahedra due to Fe oxidation.  相似文献   

8.
The crystal structure of a new compound [Mg(H2O)4(SeO4)]2(H2O) (monoclinic, P2 1/a, a = 7.2549(12), b = 20.059(5), c = 10.3934(17) Å, β = 101.989(13), V = 1479.5(5) Å3) has been solved by direct methods and refined to R 1 = 0.059 for 2577 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure consists of [Mg(H2O)4(SeO4)]0 chains formed by alternating corner-sharing Mg octahedrons and (SeO4)2? tetrahedrons. O atoms of Mg octahedrons that are shared with selenate tetrahedrons are in a trans orientation. The heteropoly-hedral octahedral-tetrahedral chains are parallel to the c axis and undulate within the (010) plane. The adjacent chains are linked by hydrogen bonds involving H2O molecules not bound with M2+ cations.  相似文献   

9.
1 Introduction Chevkinite groups can be assigned to the chevkinite-(Ce) subgroup and perrierite-(Ce) subgroup in accord with the angle β : β ≈ 100o for the chevkinite subgroup and β ≈ 113o for the perrierite subgroup. Chevkinite-(Ce), polykovite-(Ce) and Maoniupingite (new mineral No. 017 of 2003) belong to the former subgroup, while renjeite and matsubaraite belong to the latter group. As strontio-chevkinite is a Sr-analogue of perrierite, usually the natural chevkinite-(Ce) group min…  相似文献   

10.
A new heterophyllosilicate mineral schüllerite was found in the L?hley basalt quarry in the Eifel volcanic region, Germany, as a member of the late mineral assemblage comprising nepheline, leucite, augite, phlogopite, magnetite, titanite, fresnoite, barytolamprophyllite, fluorapatite, perovskite, and pyrochlore. Flattened brown crystals of schüllerite up to 0.5 × 1 × 2 mm in size and their aggregates occur in miarolic cavities of alkali basalt. The mineral is brittle, with a Mohs hardness 3–4 and perfect cleavage parallel to (001). D calc = 3.974 g/cm3. Its IR spectrum is individual and does not contain bands of OH, CO32− or H2O. Schüllerite is biaxial (−), α = 1.756(3), β = 1.773(4), γ = 1.780(4), 2V meas = 40(20)°. Dispersion is weak, r < ν. Pleochroism is medium X > Y > Z, brown to dark brown. Chemical composition (electron microprobe, mean of five-point analyses, Fe2+/Fe3+ ratio determined by the X-ray emission spectroscopic data, wt %): 3.55 Na2O, 0.55 K2O, 3.89 MgO, 2.62 CaO, 1.99 ArO, 28.09 BaO, 3.43 FeO, 8.89 Fe2O3, 1.33 Al2O3, 11.17 TiO2, 2.45 Nb2O5, 26.12 SiO2, 2.12 F, −0.89 -O=F2, 98.98 in total. The empirical formula is (Ba1.68Sr0.18K0.11Na1.05Ca0.43Mn0.47Mg0.88Fe0.442+Fe1.023+Ti1.28Nb0.17Al0.24)Σ7.95Si3.98O16.98F1.02. The crystal structure was refined on a single crystal. Schüllerite is triclinic, space group P1, unit cell parameters: a = 5.4027(1), b = 7.066(4), c = 10.2178(1)?, α = 99.816(1), β = 99.624(1), γ = 90.084(1)°, V = 378.75(2) ?3, Z = 1. The strongest lines of the X-ray powder diffraction pattern [d, ?, (I, %)]: 9.96(29), 3.308(45), 3.203(29), 2.867(29), 2.791(100), 2.664(46), 2.609(36), 2.144(52). The mineral was named in honor of Willi Schüller (born 1953), an enthusiastic, prominent amateur mineral collector, and a specialist in the mineralogy of Eifel. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration no. 3995/1,2.  相似文献   

11.
Abramovite, a new mineral species, has been found as fumarole crust on the Kudryavy volcano, Iturup Island, Kuriles, Russia. The mineral is associated with pyrrhotite, pyrite, würtzite, galena, halite, sylvite, and anhydrite. Abramovite occurs as tiny elongated lamellar crystals up to 1 mm long and 0.2 mm wide (average 300 × 50 μ m), which make up chaotic intergrowths in the narrow zone of fumarole crust formed at ~600°C. Most crystals are slightly striated along the elongation. The new mineral is silver gray, with a metallic luster and black streak. Under reflected light, abramovite is white with a yellowish gray hue. It has weak bireflectance; anisotropy is distinct without color effects. The chemical composition (electron microprobe) is as follows, wt %: 20.66 S, 0.98 Se, 0.01 Cu, 0.03 Cd, 11.40 In, 12.11 Sn, 37.11 Pb, 17.30 Bi; the total is 99.60. The empirical formula calculated on the basis of 12 atoms is Pb1.92Sn1.09In1.06Bi0.89(S6.90Se0.13)7.03. The simplified formula is Pb2SnInBiS7. The strongest eight lines in the X-ray powder pattern [d, Å (I)(hkl)] are 5.90(36)(100), 3.90(100)(111), 3.84(71)(112), 3.166(26)(114), 2.921(33)(115), 2.902(16)(200), 2.329(15)(214), 2.186(18)(125). The selected area electron diffraction (SAED) patterns of abramovite are quite similar to those of the homologous cylindrite series minerals. The new mineral is characterized by noncommensurate structure composed of regularly alternated pseudotetragonal and pseudohexagonal sheets. The structure parameters determined from the SAED patterns and X-ray powder diffraction data for pseudotetragonal subcell are: a = 23.4(3), b = 5.77(2), c = 5.83(1) Å, α = 89.1(5) °, β = 89.9(7)°, γ = 91.5(7)°, V = 790(8) Å3; for pseudohexagonal subcell: a = 23.6(3), b = 3.6(1), c = 6.2(1) Å, α = 91(2)°, β = 92(1)°, γ = 90(2)°, V = 532(10) Å3. Abramovite is triclinic, space group P(1). The new mineral is named in honor of Russian mineralogist Dmitry Abramov. The type material of abramovite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

12.
Uraninite solubility in HF solutions (0.0001–0.5 m) was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the predominant U(IV) species in aqueous solution are U(OH)40, U(OH)3F0, and U(OH)2 F20. Using the results of uraninite solubility measurement, the Gibbs free energies of the uranium (IV) species were calculated at 500°C and 1000 bar (kJ/mol): −986.55 for UO2(aq), −1712.42 for U(OH)3F0, −1755.53 for U(OH)2F20, and the equilibrium constants of the uraninite solubility in water and HF solutions were estimated: UO2(κ) = UO2(aq), which is similar to UO2(cr) + 2H2O = U(OH)40, pK0 = 6.64; UO2(cr) + HF0 + H2O = U(OH)3F0, K1 = 0.0513; UO2(cr) + 2HF0 = U(OH)2F20K2 = 7.00 × 10−4. Approximate values K3 = 5.75 × 10−3 and K4 = 6.7 × 10−2 were obtained for equilibria UO2(cr) + 4HF0 =UF40 + 2H2O and UO2(cr) + 4HF = UF40 + 2H2O. Maximum observed in the uranium concentration curve as a function of HF concentration can be explained by the decrease (to < 1) of activity coefficient ratio of HF0 to U(OH)3F0 with increasing HF concentrations.  相似文献   

13.
The paper reports new findings of avdoninite from deposits of active fumaroles in the Second Scoria Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik Volcano, Kamchatka Peninsula, Russia. The crystal structure of the mineral has been determined for the first time, which has allowed reliable determination of its space group and unit cell dimensions, refinement of its formula K2Cu5-Cl8(OH)4 · 2H2O, and correct indexing of its X-ray powder diffraction pattern. Avdoninite is monoclinic, space group P21/c, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, β = 91.104(6)°, V = 891.8(3) Å3, Z = 2. The crystal structure of this mineral has been determined on a single crystal R 1 [F > 4σ (F)] = 0.063. It is based on sheets of copper–oxo-chloride complexes [Cu5Cl8(OH)4]2– parallel to (100). The K+ cation and H2O molecules are interlayers.  相似文献   

14.
A new potassium uranyl selenate compound K(UO2)(SeO4)(OH)(H2O) has been synthesized for the first time using the technique of evaporation from water solution. Its crystal structure has been solved by direct methods (monoclinic, P21/c,a = 8.0413(9) Å, b = 8.0362(9) Å, c = 11.6032(14) Å, β = 106.925(2)°, V = 717.34(14) Å3) and refined to R 1 = 0.0319 (wR 2 = 0.0824) for 1285 reflections with |F 0| > 4σ F . The structure consists of [(UO2(SeO4)(OH)(H2O)]? chains extending along axis b. In the chains, the uranyl pentagonal bipyramids are linked via bridged hydroxyl anions and tetrahedral oxoanions [SeO4]2?. Potassium ions are situated between these chains. No chains of that type have been observed in uranyl compounds earlier, but they had been detected in the structures of butlerite, parabutlerite, uklonskovite, fibroferrite, and a number of synthetic compounds.  相似文献   

15.
The crystal structure of lisiguangite,CuPtBiS3,from Yanshan mountains,Chengde Prefecture,Hebei Province,China has been determined by single crystal X-ray diffraction.It belongs to orthorhombic space group P2_12_12_1 with a = 7.7372(15) A,b = 12.844(3) A,c = 4.9062(10) A,V =487.57(17) A~3,Z = 4.The final full-matric least-square refinement on F2 converged with Rl = 0.0495 and wR2 = 0.0992 for 704 observed reflections[I≥2σ(I)].Lisiguangite is the isomorph of known CuNiSbS_3 and CuNiBiS_3· Pt~(2+) and Bi~(3+) have the distorted octahedral coordination enviroments composed of two metal and four S and Cu~(+2) has a distorted tetrahedral coordination environment with four S atoms.Each S atom is surrounded by four metals to give a tetrahedral environment.The crystal structure is a complex 3 dimensional network.  相似文献   

16.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   

17.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   

18.
A single crystal of natrolite, Na2Al2Si3O10·2H2O, was studied by X-ray diffraction methods at room temperature. The intensities were measured with MoKα radiation (λ = 0.7107 Å) in a complete sphere of reflection up to sin θ/λ = 0.903 Å?1. The structure was refined in the orthorhombic space group Fdd2 with a = 18.2929 (7) Å, b = 18.6407(9) Å, c = 6.5871(6) Å, V = 2246 Å3, Z = 8. A refinement of high-order diffraction data yielded reliability factors of R(F) = 0.9%, R w(F) = 0.8%, GoF = 1.40 for 1856 high-angle reflections (0.7 ?in θ/λ <0.903 Å?1) and R(F) = 1.0%, R W(F) = 1.2%, GoF = 3.07 for all 3471 independent reflections in the complete sphere of reflection. The T-O distances as well as the T-O-T angles were found to be strongly influenced by the different bond strengths received by the individual oxygen atoms. The T O distances calculated using Baur's extended valence rule agree on average within 0.003 Å with the observed values. An analysis of the mean square displacement amplitudes allowed a separation of the external and internal vibrational amplitudes along the T-O bonds as well as along the Na O and H2O-O bond directions and the calculation of force constants. The internal vibrational amplitudes (ΔU) of the T-O vibrations are in the range of 5 to 11 × 10-4 Å2, that is about one order of magnitude smaller than the mean square displacement amplitudes of the external vibrations. The corresponding force constants are F = 354 to 824 Nm?1. The values of the force constants of the motion of the Na-ion and the water molecule against the framework oxygen atoms lie in the range between F = 57 and 293 Nm?1. This is the first instance where displacement amplitudes from a zeolite structure refinement could be apportioned between contributions from internal and external vibrations for individual bonds.  相似文献   

19.
New germanate analogs of the mineral surinamite, Mg3Al4BeSi3O16, have been synthesized with composition Mg4A4Ge3O16 (A=Al, Ga) and have been characterized by powder X-ray diffraction and transmission electron microscopy. The Al surinamite phase crystallizes with a primitive unit-cell (P2/n, a=10.153(1), b=11.708(2), c=9.920(1) Å, β=110.18 (2)° and Z=4) similar to that of the silicate mineral. The Ga surinamite-like phase crystallizes with a larger unit-cell (C2/c, a=10.308(2), b=23.690(5), c=10.057(l) Å, β=110.23 (2)° and Z=8). High-resolution electron microscopy has shown the common formation of intergrowths between the surinamite and sapphirine structures, illustrating the polysomatic structural relationship between them. Observations of disordered microstructures in the Al surinamite suggest the occurrence of a P2/n?C2/c transformation.  相似文献   

20.
The supracrustal enclave within the Peninsular Gneiss in the Honakere arm of the Chitradurga-Karighatta belt comprises tremolite-chlorite schists within which occur two bands of quartzite coalescing east of Jakkanahalli(12°39′N; 76°41′E), with an amphibolite band in the core. Very tight to isoclinal mesoscopic folds on compositional bands cut across in the hinge zones by an axial planar schistosity, and the nearly orthogonal relation between compositional bands and this schistosity at the termination of the tremolite-chlorite schist band near Javanahalli, points to the presence of a hinge of a large-scale, isoclinal early fold (F1). That the map pattern, with an NNE-plunging upright antiform and a complementary synform of macroscopic scale, traces folds 'er generation (F 2),is proved by the varying attitude of both compositional bands (S0) and axial pranar schistosity (S 1), which are effectively parallel in a major part of the area. A crenulation cleavage (S 2) has developed parallel to the axial planes of theF 2 folds at places. TheF 2 folds range usually from open to rarely isoclinal style, with theF 1 andF 2 axes nearly parallel. Evidence of type 3 fold interference is also provided by the map pattern of a quartzite band in the Borikoppalu area to the north, coupled with younging directions from current bedding andS 0 -S 1 inter-relation. Although statistically theF 1 andF 2 linear structures have the same orientation, detailed studies of outcrops and hand specimens indicate that the two may make as high an angle as 90°. Usually, in these instances, theF 1 lineations are unreliable around theF 2 axes, implying that theF 2 folding was by flexural slip. In zones with very tight to almost isoclinalF 2 folding, however, buckling attendant with flattening has caused a spread of theF 1 lineations almost in a plane. Initial divergence in orientation of theF 1 lineations due to extreme flattening duringF 1 folding has also resulted in a variation in the angle between theF 1 andF 2lineations in some instances. Upright later folding (F3) with nearly E-W strike of axial planes has led to warps on schistosity, plunge reversals of theF 1 andF 2 axes, and increase in the angle between theF 1 andF 2 lineations at some places. Large-scale mapping in the Borikoppalu sector, where the supposed Sargur rocks with ENE ‘trend’ abut against the N-‘trending’ rocks of the Dharwar Supergroup, shows a continuity of rock formations and structures across the hinge of a large-scaleF 2 fold. This observation renders the notion, that there is an angular unconformity here between the rocks of the Sargur Group and the Dharwar Supergroup, untenable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号