共查询到20条相似文献,搜索用时 37 毫秒
1.
Younger Dryas deglaciation at Mt. Billingen, and clay varve dating of the Younger Dryas/Preboreal transition 总被引:1,自引:0,他引:1
BO STRÖMBERG 《Boreas: An International Journal of Quaternary Research》1994,23(2):177-193
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13 C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales. 相似文献
2.
Diatom data from the Skagerrak–Kattegat show that large amounts of meltwater were discharged into the Kattegat–Skagerrak from the Baltic Ice Lake during the Younger Dryas interval. Strong meltwater discharge greatly freshened surface-water salinity in the Kattegat and areas along the Swedish west coast and possibly changed the directions of sea-surface salinity gradients from north–south to east–west or northwest–southeast. It resulted in a markedly stratified water column in salinity in the Kattegat, which complicates the environmental interpretation based on different types of microfossils. The meltwater influence on the large area of the Skagerrak during the Younger Dryas was, however, restricted along the Norwegian coast where it flowed into the Norwegian Sea. 相似文献
3.
STEFAN MAJORAN KJELL NORDBERG 《Boreas: An International Journal of Quaternary Research》1997,26(3):181-200
The ostracods in three vibro cores (representing the time between c . 13000 and 12000 BP) from southern Kattegat were studied to further elucidate palaeoenvironmental conditjons in an area interpreted to be influenced by a Late Weichselian drainage of the Baltic Ice Lake via the Öresund Strait. This time represents an extremely important phase of the deglaciation of the northern hemisphere. It is characterized by rapid climatic change and enormous amounts of meltwater that are drained into the ocean. The ostracod assemblages identified are characterized by a peculiar mixture of marine (arctic and temperate) and freshwater species believed to characterize environments ranging from the tidal zone of an outer estuary (or delta) to fully marine sublittoral conditions in a subarctic climate. Dominant species display autochthonous population structures typical of in situ elements of such environments. Indications of very shallow conditions are, however, difficult to reconcile with palaeobathymetrical inferences from earlier studies of shore-level displacements. It is, therefore, possible that the present assemblages are mainly death assemblages deposited offshore by postmortem meltwater discharge. Rare pre-Quaternary ostracods similar to Mesozoic species previously reported from the Öresund Strait (drill holes) and the Swedish west coast may have been redeposited by outflowing meltwater. 相似文献
4.
HELENE BERGSTEN KJELL NORDBERG 《Boreas: An International Journal of Quaternary Research》1993,22(4):311-318
Foraminifera, pollen, lithology and radiocarbon dates from a core in the southern Kattegat provide a rare opportunity to obtain data relating to environmental conditions during the Middle Weichselian in the offshore Kattegat. This core is also correlated with an adjacent second core. Redeposited Eemian foraminifera and pollen occur in the Middle Weichselian sediments. This is interpreted as a result of reworking by an active Middle Weichselian ice present in, or advancing from, a northeasterly to easterly direction. During a second phase the Middle Weichselian sediments were compacted, probably a result of overriding by an ice from the northeast during the Middle Weichselian and/or the Late Weichselian Maximum. The Middle Weichselian sequence is overlain by a Holocene sequence which, in turn, is overlain by an admixture of Middle Weichselian and Holocene sediments. This mixing may be a result of tectonic activity some time between 7300 and 1000 BP. The core ends in Holocene fine sediments representing the last c. 1000 years. 相似文献
5.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role. 相似文献
6.
《Quaternary Science Reviews》2007,26(5-6):690-704
A high-resolution sedimentary record from Lake Masoko (Tanzania), based on pollen assemblages and magnetic susceptibility, shows that the most prominent environmental change of the last 45 000 years occurred ca 11.7 cal. ka BP, near the end of the Younger Dryas event. During this climatic transition, the Masoko catchment vegetation changed from being intolerant to a long/severe dry season to being tolerant, while the inferred lake-dynamics indicates strengthened seasonal fluctuations and/or lower levels than before. Comparison of the Masoko record with other regional palaeoclimatic data shows that evidence of this climatic transition is widespread in tropical Africa. The proposed failure of the African Monsoon during the Younger Dryas, associated with a southward position/migration of the meteorological equator in East Africa, was followed by an abrupt and lasting resumption of monsoon activity, and more pronounced migration of the Intertropical Convergence Zone (ITCZ) over the African continent. Such a reorganisation of the atmospheric circulation, equally observed across the whole tropical region (South America, East and West Asia, and Africa), could have been a strong amplifier of northern high latitude changes in temperature and precipitation across this major climatic transition. 相似文献
7.
HREGGVIDUR NORDDAHL HAFLIDI HAFLIDASON 《Boreas: An International Journal of Quaternary Research》1992,21(1):23-41
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years. 相似文献
8.
The extent of glaciation in northwestern Alaska, the source of sediment supply to the Chukchi shelf and slope, and the movement of sea ice and icebergs across the shelf during the last glacial maximum (LGM) remain poorly constrained. Here we present geophysical and geological data from the outer Chukchi margin that reveal a regionally extensive, heavily ice-scoured surface ∼ 5-8 m below the modern seafloor. Radiocarbon dating of this discrete event yields age estimates between 10,600 and 11,900 14C yr BP, indicating the discharge event occurred during the Younger Dryas. Based on mineralogy of the ice-rafted debris, the icebergs appear to be sourced from the northwestern Alaskan margin, which places important constraints on the ice extent in northern Alaska during the LGM as well as existing circulation models for the region. 相似文献
9.
Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania 总被引:2,自引:1,他引:2
Angelica Feurdean Volker Mosbrugger Bogdan P. Onac Victor Polyak Daniel Veres 《Quaternary Research》2007,68(3):364-378
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed. 相似文献
10.
HOLGER LYKKE-ANDERSEN MARIT-SOLVEIG SEIDENKRANTZ KAREN LUISE KNUDSEN 《Boreas: An International Journal of Quaternary Research》1993,22(4):291-298
The stratigraphic record from a boring penetrating the 104 m thick Quaternary sequence on the island of Anholt is summarized. The spatial distribution of the pre-Quaternary formations and the surface topography of these are described on the basis of reflection seismic profiles. It is concluded that Anholt is located in the crestal zone of a southeast–northwest trending anticline in the pre-Quaternary. The anticline was formed during the Late Cretaceous–Early Tertiary inversion episodes and was later deeply truncated by erosion. A southeast–northwest trending erosional channel, c. 2 km wide and with a maximum depth c. 250 m below sea level, is located southeast of Anholt along the crest of the anticline. This channel is not present at the bore locality. Although no direct correlation from the boring to the seismic profiles could be achieved it is argued that a strong reflection near the base of the Quaternary outside the channel may be correlated with the Saalian–Eemian complex found in the boring. Three younger sequences of probable Early and Middle Weichselian, Late Glacial and Holocene age respectively have been recognized. The Late Glacial and Holocene sediments appear to have been deposited in erosional troughs and channels cut into a sequence of Lower and Middle Weichselian sediments. Post-Eemian till deposits or other evidence unambiguously indicating the presence of Weichselian glaciers have not been found, either in the boring or in the seismic profiles. It is therefore assumed that the erosion of the Lower-Middle Weichselian sequence was of fluvial origin and can be ascribed to the lowstand period of the Weichselian glacial period. The western part of Anholt can possibly be regarded as an erosional remnant of the Lower-Middle Weichselian sequence. 相似文献
11.
KELVIN G. GYLDENHOLM HOLGER LYKKE-ANDERSEN GUSTAF LIND 《Boreas: An International Journal of Quaternary Research》1993,22(4):319-327
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area. 相似文献
12.
MARIT-SOLVEIG SEIDENKRANTZ KAREN LUISE KNUDSEN 《Boreas: An International Journal of Quaternary Research》1993,22(4):299-310
Examination of a 10 m piston core from the eastern Kattegat revealed marine sediments spanning a period from the late Middle Weichselian to the Early Holocene. The oldest marine unit in the core is 14 C-dated to about 30,000–36,000 years BP. These sediments represent the Middle Weichselian Sandnes/Denekamp-Hengelo Interstadial (upper part of stable isotope stage 3) and can be correlated to marine deposits from several localities in the Kattegat region by means of foraminifera. The Late Weichselian deposits comprise sediments from the Oldest Dryas Stadial and the Allerød Interstadial. The intervening periods are not represented in the sequence (hiatuses). Sediments from the latest part of the Early Holocene Preboreal period succeeding the Allerod sequence indicate a considerable hiatus spanning 2000–3000 years around the Weichselian/Holocene boundary. The late Preboreal faunas document a high freshwater inflow during this period, and stable conditions seem not to have been reached in the area until a few hundred years later, in the Boreal period. Comparison with boxcore material from the same site documents a reduction of the energy level of the bottom currents some time between c. 8000 and 800 years BP. 相似文献
13.
KELD CONRADSEN 《Boreas: An International Journal of Quaternary Research》1993,22(4):367-382
The southern Kattegat is characterized by a strong halocline at a water depth of 10–20 m. Samples were collected within and below the halocline at 12–58 m. A Q-mode factor analysis identified three major and three minor foraminiferal assemblages, each characterized by one diagnostic species. Linear regression analyses showed that the distribution of assemblages and their diagnostic species is associated with substrate and hydrography. The Bulimina marginata assemblage is connected with fine-grained, organic-rich sediments below the halocline. The Elphidium excavalum and the Eggerelloides scabrus assemblages show weak correlations with substrate and are presumably connected with the halocline. Minor assemblages of Cibicides lobatulus and Textularia bocki are associated with coarse-grained sediments. The Stainforthia fusiformis assemblage has only weak correlation with substrate and hydrography. 相似文献
14.
Quan Hua Mike Barbetti David Fink Klaus Felix Kaiser Michael Friedrich Bernd Kromer Vladimir A. Levchenko Ugo Zoppi Andrew M. Smith Fiona Bertuch 《Quaternary Science Reviews》2009,28(25-26):2982-2990
Atmospheric radiocarbon variations over the Younger Dryas interval, from 13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ14C associated with the Younger Dryas onset occurs at 12,760 cal yr BP, 240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of 40‰ followed by several centennial Δ14C variations of 20–25‰. Comparing the tree-ring Δ14C to marine-derived Δ14C and modelled Δ14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ14C variations for the remainder of the Younger Dryas. 相似文献
15.
ERIK LAGERLUND MICHAEL HOUMARK-NIELSEN 《Boreas: An International Journal of Quaternary Research》1993,22(4):337-347
This paper presents evidence on the timing and pattern of the Late Weichselian deglaciation in SW Scandinavia, particularly in the Öresund–Kattegat region before the Allerød interstadial. New radiocarbon ages and evaluated older dates demonstrate that active glacier ice had left eastern Denmark, southern Halland and western Skåne before 14,000 BP. The deglaciation in the Öresund region took place mainly under glacioestuarine conditions in a narrow fjord or inlet with some marine influence, as indicated by radiocarbon-dated finds of Polar Cod ( Boreogadus saida ) and the vertebra of a Ringed Seal ( Phoca hispida ). The Swedish west coast experienced glaciomarine and deltaic ice proximal conditions, where Vendsyssel was at the same time under full marine conditions with little evidence of ice rafting. A paleogeographic interpretation illustrates land, sea and ice configurations around 14,000 BP. We suggest that a subsequent lateglacial transgression reached the entire region almost simultaneously and peaked around 13,300 BP. This led to deposition of an ice-rafted diamicton ( the Öresund diamicton ) in Skåne and Sjælland, and of glaciolacustrine mud in Halland. We propose that the complex transgression and regression events recorded in the region were governed by interaction of the eustatic sea level rise, isostatic reponse to glacier unloading and possibly also by damming by an ice stream in the Skagerrak and northern Kattegat. 相似文献
16.
17.
PER HOLMLUND JAMES FASTOOK 《Boreas: An International Journal of Quaternary Research》1993,22(2):77-86
In an effort to analyse the complex Younger Dryas event in central Scandinavia a finite-element method solution of the continuity equation has been used to describe the glaciological processes involved. In order to make the model compatible with the geologic evidence, it is suggested that the ice sheet was drained by a 'Baltic Ice Stream'. The Ice Stream was steered by differences in basal conditions. We also conclude that the climatic event responsible for the Younger Dryas stillstand was probably short (< 500 years), and that different regions of the ice sheet responded in different ways. During a simulated termination it was shown that there was broad agreement about the marginal positions in Sweden and Finland if it was assumed that there was a general sliding zone for elevations below 100 m. with an enhanced sliding zone through the centre of the Baltic and the Gulf of Bothnia. A stillstand near the position of the Younger Dryas moraines is attained with a climatic equilibrium line altitude (ELA) depression of 600 m for a period of 500 years. Agreement of simulated behaviour with observed behaviour is less consistent for the more maritime areas of western Sweden and western Norway. 相似文献
18.
ÁRNÝ E. SVEINBJÖRNSOTTIR JÓN EIRÍKSSON ÁSLAUG GEIRSDÓTTIR JAN HEINEMEIER NIELS RUD 《Boreas: An International Journal of Quaternary Research》1993,22(2):147-157
An exhaustive 14 C dating programme of molluscs from the Fossvogur sediments in Reykjavik. Iceland is presented. For the first time all the fossiliferous units of the sediments are dated. The results confirm earlier conclusions of a widespread occurrence of marine sediments of Allerød age in Reykjavik. The set of dates from the Fossvogur sediments shows a narrow 14 C age distribution (standard deviation of ±235 years) of molluscs from all localities and from successive marine units in vertical sections. The weighted mean conventional 14 C age is 11,400 BP. Assuming a reservoir effect of 400 years. this corresponds to a reservoir-corrected age of I1,000 BP. i.e. the Allerød- Younger Dryas transition for the sampled units, These new 14 C dates from Fossvogur confirm the need for a revision of the Upper Pleistocene chronology of the Reykjavik region. They also have a bearing on the Late Weichselian record of glacier readvances and sea-level changes in the area. The dates suggest that the marine units in Fossvogur accumulated within a restricted time-span of a few hundred years. The sediments in Fossvogur are of volcaniclastic origin and are extremely lithified, indicating local geothermal activity soon after their deposition. This may explain anomalously high D/L amino acid ratios measured in molluscs from the Fossvogur sediments. δ13 C and δ18 O results suggest that temperatures may have ranged up to 60°C. 相似文献
19.
Stephen A. Hall William L. Penner Manuel R. Palacios-Fest Artie L. Metcalf Susan J. Smith 《Quaternary Research》2012,77(1):87-95
A thick alluvial sequence in central New Mexico contains the Scholle wet meadow deposit that traces upstream to a paleospring. The wet meadow sediments contain an abundant fauna of twenty-one species of freshwater and terrestrial mollusks and ten species of ostracodes. The mollusks and ostracodes are indicative of a local high alluvial water table with spring-supported perennial flow but without standing water. Pollen analysis documents shrub grassland vegetation with sedges, willow, and alder in a riparian community. Stable carbon isotopes from the wet meadow sediments have δ13C values ranging from ? 22.8 to ? 23.3‰, indicating that 80% of the organic carbon in the sediment is derived from C3 species. The wet meadow deposit is AMS dated 10,400 to 9700 14C yr BP, corresponding to 12,300 to 11,100 cal yr BP and overlapping in time with the Younger Dryas event (YD). The wet meadow became active about 500 yr after the beginning of the YD and persisted 400 yr after the YD ended. The Scholle wet meadow is the only record of perennial flow and high water table conditions in the Abo Arroyo drainage basin during the past 13 ka. 相似文献
20.
Younger Dryas and early Holocene lake-level fluctuations in the Jura mountains, France 总被引:2,自引:0,他引:2
MICHEL MAGNY PASCALE RUFFALDI 《Boreas: An International Journal of Quaternary Research》1995,24(2):155-172
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet. 相似文献