首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For arbitrary polynomial loading and a sufficient finite number of nodal points N, the solution for the 3D Timoshenko beam differential equations is polynomial and given as \({{\varvec \theta} = \sum_{i=1}^N I_i {\varvec \theta}_i}\) for the rotation field and \({{\bf u} = \sum_{i=1}^{N+1} J_i {\bf u}_i}\) for the displacement field, where I i and J i are the Lagrangian polynomials of order N?1 and N, respectively. It has been demonstrated in this work that the exact solution for the displacement field may be also written in a number of alternative ways involving contributions of the nodal rotations including \({{\bf u} = \sum_{i=1}^N I_i \left[ {\bf u}_i + \frac 1 N ( {\varvec \theta} - {\varvec \theta}_i ) \times {\bf R}_i \right]}\), where R i are the beam nodal positions.  相似文献   

2.
Let \({f: U\rightarrow {\mathbb R}^2}\) be a continuous map, where U is an open subset of \({{\mathbb R}^2}\). We consider a fixed point p of f which is neither a sink nor a source and such that {p} is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations \({\{{\rm ind}(f^n,p)\}_{n=1}^\infty}\) is periodic, bounded from above by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem (Annals of Math., 146, 241–293 (1997)) onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.  相似文献   

3.
4.
In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A,  such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.  相似文献   

5.
We deal with one dimensional p-Laplace equation of the form
$$\begin{aligned} u_t = (|u_x|^{p-2} u_x )_x + f(x,u), \ x\in (0,l), \ t>0, \end{aligned}$$
under Dirichlet boundary condition, where \(p>2\) and \(f:[0,l]\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with \(f(x,0)=0\). We will prove that if there is at least one eigenvalue of the p-Laplace operator between \(\lim _{u\rightarrow 0} f(x,u)/|u|^{p-2}u\) and \(\lim _{|u|\rightarrow +\infty } f(x,u)/|u|^{p-2}u\), then there exists a nontrivial stationary solution. Moreover we show the existence of a connecting orbit between stationary solutions. The results are based on Conley index and detect stationary states even when those based on fixed point theory do not apply. In order to compute the Conley index for nonlinear semiflows deformation along p is used.
  相似文献   

6.
Let \({S\subset\mathbb{R}^2}\) be a bounded Lipschitz domain and denote by \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\) the set of mappings \({u\in W^{2,2}(S;\mathbb{R}^3)}\) which satisfy \({(\nabla u)^T(\nabla u) = Id}\) almost everywhere. Under an additional regularity condition on the boundary \({\partial S}\) (which is satisfied if \({\partial S}\) is piecewise continuously differentiable), we prove that the strong W 2,2 closure of \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)\cap C^{\infty}(\overline{S};\mathbb{R}^3)}\) agrees with \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\).  相似文献   

7.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

8.
In this paper we study the Dirichlet problem
$\left\{\begin{array}{lll}-\Delta_p{u} = \sigma |u|^{p-2}u + \omega \quad {\rm in}\;\Omega,\\ u = 0 \qquad\quad\qquad\quad\;\qquad{\rm on}\;\partial\Omega,\end{array}\right.$
, where σ and ω are nonnegative Borel measures, and \({\Delta_p{u} = \nabla \cdot (\nabla{u} \, |\nabla{u}|^{p-2})}\) is the p-Laplacian. Here \({\Omega \subseteq \mathbf{R}^n}\) is either a bounded domain, or the entire space. Our main estimates concern optimal pointwise bounds of solutions in terms of two local Wolff’s potentials, under minimal regularity assumed on σ and ω. In addition, analogous results for equations modeled by the k-Hessian in place of the p-Laplacian will be discussed.
  相似文献   

9.
Mixing and a nonlinear bimolecular chemical reaction (reactant A + reactant B → product; reaction rate r?=?κc 1 c 2) in laminar shear flow are investigated. It is found that asymptotically the dominant balance between the rates of production and dissipation of the mean-squared concentration fluctuations \((\sigma_{c_1 }^2 ,\sigma_{c_2 }^2)\) and cross-covariance of concentration fluctuations \((\overline {c_1 c_2 })\) occurs under nonreactive and reactive conditions. Longitudinal dispersion of the cross-sectional averages (C 1, C 2), and variances and the cross-covariance of reactant concentrations can be asymptotically quantified by the classic Taylor dispersion coefficient (D) even under reactive conditions. The characteristic time-scale (τ) over which molecular diffusion dissipates concentration variance and the cross-covariance of reactant concentrations is also shown to be the same under nonreactive and reactive conditions. A variational estimate of τ is shown to be close to the values inferred from detailed numerical simulation. The production-dissipation balance implies that the cross-sectional averaged reaction rate follows \(\overline r =\kappa_{eff} C_1 C_2 \) and \(\kappa _{eff} \approx \kappa \left[ {1+2D\tau \left( {{\partial \ln C_1 } \mathord{\left/ {\vphantom {{\partial \ln C_1 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)\left( {{\partial \ln C_2 } \mathord{\left/ {\vphantom {{\partial \ln C_2 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)} \right]\). The effective reaction rate parameter (κ eff ) is higher than that of well-mixed batch test reaction rate constant (κ) for initially overlapping species and κ eff is smaller than κ for initially non-overlapping species.  相似文献   

10.
Given bounded vector field \({b : {\mathbb{R}^{d}} \to {\mathbb{R}^{d}}}\), scalar field \({u : {\mathbb{R}^{d}} \to {\mathbb{R}}}\), and a smooth function \({\beta : {\mathbb{R}} \to {\mathbb{R}}}\), we study the characterization of the distribution \({{\rm div}(\beta(u)b)}\) in terms of div b and div(ub). In the case of BV vector fields b (and under some further assumptions), such characterization was obtained by L. Ambrosio, C. De Lellis and J. Malý, up to an error term which is a measure concentrated on the so-called tangential set of b. We answer some questions posed in their paper concerning the properties of this term. In particular, we construct a nearly incompressible BV vector field b and a bounded function u for which this term is nonzero. For steady nearly incompressible vector fields b (and under some further assumptions), in the case when d = 2, we provide complete characterization of div(\({\beta(u)b}\)) in terms of div b and div(ub). Our approach relies on the structure of level sets of Lipschitz functions on \({{\mathbb{R}^{2}}}\) obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique, we obtain new sufficient conditions when any bounded weak solution u of \({\partial_t u + b \cdot \nabla u=0}\) is renormalized, that is when it also solves \({\partial_t \beta(u) + b \cdot \nabla \beta(u)=0}\) for any smooth function \({\beta \colon{\mathbb{R}} \to {\mathbb{R}}}\). As a consequence, we obtain new a uniqueness result for this equation.  相似文献   

11.
A spatially two-dimensional sixth order PDE describing the evolution of a growing crystalline surface h(xyt) that undergoes faceting is considered with periodic boundary conditions, as well as its reduced one-dimensional version. These equations are expressed in terms of the slopes \(u_1=h_{x}\) and \(u_2=h_y\) to establish the existence of global, connected attractors for both equations. Since unique solutions are guaranteed for initial conditions in \(\dot{H}^2_{per}\), we consider the solution operator \(S(t): \dot{H}^2_{per} \rightarrow \dot{H}^2_{per}\), to gain our results. We prove the necessary continuity, dissipation and compactness properties.  相似文献   

12.
13.
We formulated a paradox in the theory of turbulent premixed flame in the flamelet regime: discrepancy between the Damköhler (1940) and Shelkin (1943) estimate of the turbulence flame speed \(U_{t} \sim {u}^{\prime }\) in the case of strong turbulence (\({u}^{\prime }>>S_{L} \)) and numerous experiments that show a strong dependence of Ut on the speed of the instantaneous flame SL. We name this discrepancy the Damköhler-Shelkin paradox. The first aim of the research is to validate and clarify this estimate, which is based on intuitive considerations, as the paradox must be a statement that seems contradictory to observations but is actually true. We analysed the turbulent flame in the context of the original hyperbolic combustion equation that directly describes the leading edge of the flame, which is a locus of the Zel’dovich “leading points” controlling the speed of the turbulent flame. Analysis of the corresponding characteristic equations results in the expression for speed on the steady-state turbulent flame \(U_{t} ={u}^{\prime }\sqrt {1+(S_{L} /{u}^{\prime })^{2}} \), which is the case when \({u}^{\prime }>>S_{L} \) becomes \(U_{t} \cong {u}^{\prime }\). This result confirms and improves the Damköhler-Shelkin estimate \(U_{t} \sim {u}^{\prime }\). The second aim is to resolve the Damköhler-Shelkin paradox. We explain the discrepancy with observations by the fact that turbulent flames are transient due to insufficient residence time in the real burners to reach statistical equilibrium of wrinkle structures of the random flame surface. We consider the transient flame in the intermediate asymptotic stage when the small-scales wrinkles are in statistical equilibrium, while at the same time the large-scale wrinkles are far from equilibrium. The expressions for the flame speed and width, which we deduce using the dimensional analysis and general properties of the ransom surface, \(U_{t} \sim ({u}^{\prime }S_{L})^{1/2}\) and \(\delta _{t} \sim ({u}^{\prime }Lt)^{1/2}\), show that this transient flame is in fact a turbulent mixing layer travelling with constant speed Ut depending on SL, the intermediate steady propagation (ISP) flame. Qualitative estimations of the times required for the small-scale and large-scale wrinkles to reach statistical equilibrium show that the turbulent Bunsen- and V-flames correspond to the intermediated asymptotic stage, and the turbulent flames with a complete equilibrium structure of the wrinkled flamelet surface are not attainable under laboratory conditions. We present the results of numerical simulations of the impingent flames, which count in favour of the belief that these flames are also transient.  相似文献   

14.
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincaré inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of
$$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^{p-2}\nabla u)}=0, \quad \mathrm {in} \ U_\tau = U \times (\tau _1, \tau _2] , \quad p>1,\quad q>1 \end{aligned}$$
and of its associated Dirichlet problem, respectively. For particular ranges of the exponents p and q, we show that any locally nonnegative weak subsolution, taken in \(Q (\subset \bar{Q}\subset U_\tau )\), is controlled from above by the \(L^\alpha (\bar{Q}) \)-norm, for \(\alpha = \max \{p, q+1\}\). As for the global setting, under suitable assumptions on the boundary datum g and on the initial datum, we obtain sup bounds for u, in \(U \times \{ t\}\), which depend on the \(\sup g\) and on the \(L^{q+1}(U \times (\tau _1, \tau _1+t])\)-norm of \((u-\sup g)_+\), for all \(t \in (0, \tau _2-\tau _1]\). On the critical ranges of p and q, a priori local and global \(L^\infty \) estimates require extra qualitative information on u.
  相似文献   

15.
This paper is concerned with the following fractional Schrödinger equation
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s} u+u= k(x)f(u)+h(x) \text{ in } \mathbb {R}^{N}\\ u\in H^{s}(\mathbb {R}^{N}), \, u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$
where \(s\in (0,1),N> 2s, (-\Delta )^{s}\) is the fractional Laplacian, k is a bounded positive function, \(h\in L^{2}(\mathbb {R}^{N}), h\not \equiv 0\) is nonnegative and f is either asymptotically linear or superlinear at infinity. By using the s-harmonic extension technique and suitable variational methods, we prove the existence of at least two positive solutions for the problem under consideration, provided that \(|h|_{2}\) is sufficiently small.
  相似文献   

16.
Under different assumptions on the potential functions b and c, we study the fractional equation \(\left( I-\varDelta \right) ^{\alpha } u = \lambda b(x) |u|^{p-2}u+c(x)|u|^{q-2}u\) in \(\mathbb {R}^N\). Our existence results are based on compact embedding properties for weighted spaces.  相似文献   

17.
Yongxin Yuan  Hao Liu 《Meccanica》2013,48(9):2245-2253
The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let M a SR n×n be the analytical mass matrix, and Λ=diag{λ 1,…,λ p }∈C p×p , X=[x 1,…,x p ]∈C n×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $ , $x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $ for j=1,…,l, and λ k R, x k R n for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that M a 2+DXΛ+KX=0. Problem 2: Let D a ,K a SR n×n be the analytical damping and stiffness matrices. Find $(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$ such that $\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$ , where S E is the solution set of Problem 1 and ∥?∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.  相似文献   

18.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

19.
In this paper, we prove the existence of a family of new non-collision periodic solutions for the classical Newtonian n-body problems. In our assumption, the \({n=2l \geqq 4}\) particles are invariant under the dihedral rotation group Dl in \({\mathbb{R}^3}\) such that, at each instant, the n particles form two twisted l-regular polygons. Our approach is the variational minimizing method and we show that the minimizers are collision-free by level estimates and local deformations.  相似文献   

20.
In this paper we study the limit as \(\varepsilon \rightarrow 0\) of the singularly perturbed second order equation \(\varepsilon ^2 \ddot{u}_\varepsilon + \nabla _{\!x} V(t,u_\varepsilon (t))=0\), where V(tx) is a potential. We assume that \(u_0(t)\) is one of its equilibrium points such that \(\nabla _{\!x}V(t,u_0(t))=0\) and \(\nabla _{\!x}^2V(t,u_0(t))>0\). We find that, under suitable initial data, the solutions \(u_\varepsilon \) converge uniformly to \(u_0\), by imposing mild hypotheses on V. A counterexample shows that they cannot be weakened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号