首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以光伏电池生产废料中的大尺寸硅颗粒(200~800 nm)为原料,水性聚氨酯(PU)和聚苯胺(PANI)作为碳源,通过液相包裹法和低温热解法制备了不同结构碳复合的硅碳负极材料(SPU与SPU#PANI),分别研究了复合碳含量、微结构与元素掺杂对负极电化学性能的影响。SPU负极中碳复合量低,首次放电比容量高达2193.6 mAh/g,但循环稳定性差。经二级碳复合后的SPU#PANI导电性提高,在多孔碳微结构支撑作用下,不仅获得了较高的放电比容量(1488.8 mAh/g),而且经100次循环后SPU#PANI放电比容量保持在756.8 mAh/g以上,表现出良好的倍率性能。研究结果表明,大尺寸硅颗粒表面复合了具备多孔结构的碳后,不仅为硅充放电过程中的膨胀提供了缓冲,也为锂离子传输提供通道,有效地提升了硅基负极的电化学性能和稳定性。本工作采用的多级碳低温热解复合方法,可为锂离子电池硅基负极产业化技术发展提供重要的借鉴。  相似文献   

2.
硅材料具有较高的理论容量,被视为发展高能量锂离子电池的重要材料之一。但是硅在充放电循环中体积变化较大,会导致负极材料粉化,严重影响电池的电化学性能。黏结剂作为电极的重要组成部分,对于稳定负极结构,改善电池性能具有重要作用。总结归纳了合成类聚合物、生物类聚合物等硅基负极黏结剂的研究进展,合成类聚合物主要包括聚丙烯酸类、聚偏二氟乙烯类以及导电类黏结剂,生物类聚合物主要包括羧甲基纤维素类、海藻酸钠类以及其他生物类黏结剂。分析了选择硅基负极黏结剂的条件,包括要有极性官能团、具有一定的弹性和机械强度、化学稳定性高、最好具有一定的导电性等。极性基团可以与硅表面的羟基形成氢键,增强材料之间的黏结性能,为了更好地制约硅的体积膨胀,可以对其进行改性,使其具有一定的弹性和自愈能力;也可以选择一些导电物质,使黏结剂本身具有导电性能,可以提高电极内部导电网络的稳定性并提高活性物质的含量等。本文也为黏结剂的选择和发展提供了思路。  相似文献   

3.
锂离子电池具有能量密度高、自放电率低、使用温度范围广及循环寿命长等优点,在便携式电子设备、电动汽车和储能等领域得到广泛应用。TiNb_(2)O_(7)具有较高理论比容量(388 mAh/g),在充放电过程中体积形变较小,且在快速充电时可以避免锂枝晶的生成,使电池具有更好的安全性和更短的充电时间,是很有潜力的锂离子电池负极材料之一。但是,TiNb_(2)O_(7)的电子电导率和离子电导率较低,阻碍了其推广应用。本文作者通过对近期相关研究的探讨,结合国内外在TiNb_(2)O_(7)负极材料制备方面的最新研究进展,综述了TiNb_(2)O_(7)的结构、制备方法及改性策略,对其晶体结构及嵌锂机制进行讨论;同时介绍了高温固相法、溶胶凝胶法、静电纺丝法、溶剂热法及模板法等几种TiNb_(2)O_(7)的制备方法,分别介绍了纳米化、掺杂、引入氧空位及添加导电涂层等四个改性方法及其对TiNb_(2)O_(7)电化学性能的改善效果。综述分析表明,纳米化可以缩短锂离子的扩散路径,掺杂以及氧空位的引入可以改变TiNb_(2)O_(7)结构,复合电极可以改善其导电性,不同的改性方法可以有效地提高电极材料的倍率及循环性能,有望使其在高功率储能器件中得到良好应用。  相似文献   

4.
电动汽车因为节能环保和能量转化效率高等特性在近年来发展迅速。在低温下,作为动力来源的锂离子电池的放电功率和容量等性能严重衰减,影响着电动汽车在北方极寒地区的发展和普及。因此,如何在低温下对锂离子电池进行可靠、高效、安全地低温加热显得尤为重要。以三元锂方块电池为研究对象,通过测试电池在不同工况下的低温特性,得出了电池电特性和热特性参数。建立单体电池低温电热耦合模型,通过神经网络方法拟合实验数据,得到电池低温加热仿真模型。通过电池不同工况下的温升实验,验证了仿真模型的精度。本文提出了电池多段恒流复合加热方法,建立了电池老化、加热时间、容量收益的多目标非线性优化模型,揭示了电池老化、加热时间和容量收益之间的关系,得到了评价加权权重矩阵。利用非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)和优劣解距离法(TOPSIS),得到单体电池平衡加热策略,探究了电池不同初始状态对优化目标的影响规律。根据电池的不同初始状态以平衡加热策略为基础建立了单体电池加热电流数据库。电池初始温度为-20℃时,加热到10℃,所需加热时间为253 s,容量收益为4.72 Ah,电池老化为0.482‱,峰值功率收益为1104 W。  相似文献   

5.
为了研究氧化亚硅和石墨在复合应用时的循环衰减机制,本工作通过在循环过程中增加小电流可逆容量标定,消除了电压极化对衰减行为的影响。通过在软包装电池内部预先埋入参比电极,对比不同循环次数时正极和负极的电化学特征变化,利用负极微分曲线解析氧化亚硅和石墨的去锂化容量演变过程和衰减程度。同时,结合交流阻抗谱(EIS)、扫描电子显微技术(SEM)、元素能谱(EDS)和等离子体发射光谱(ICP)等测试。结果表明,造成电池循环衰减的主要原因是活性锂损失和氧化亚硅衰减,两者造成的容量损失分别为0.45 Ah和0.36 Ah。负极衰减速率明显快于正极,循环600次后,负极中石墨和氧化亚硅的衰减程度分别为2.2%和30.3%。电池在循环过程中产生了新的界面阻抗,所有动力学阻抗参数呈逐渐增大的趋势。拆解电池发现,循环后负极发生了严重的体积膨胀和副反应,导致锂损失在负极并失活,引起界面阻抗的增长和电池容量的衰减。本研究可以无损定量识别氧化亚硅和石墨在循环过程中的衰减程度,为含硅复合负极的工程化应用提供了研究基础。  相似文献   

6.
电动汽车产业的快速发展对中国实现碳达峰、碳中和目标意义重大。动力电池作为电动汽车的动力来源与核心部件,其报废后的高效清洁利用处置是推动电动汽车行业可持续发展的关键。负极材料是决定动力电池电化学性能的关键因素之一,石墨因具有导电率高、可逆容量高和循环性能稳定等优点,成为当前主流商业化负极材料。相较于锂、镍和钴等高价值关键金属,石墨负极材料的回收尚未引起足够的重视,其产业化高效清洁利用技术尤为缺乏。本文在系统分析全球及我国石墨资源储量、产量和主要应用领域的基础上,综述了废锂离子电池石墨负极利用处置技术最新研究进展,着重剖析了物理和化学回收法的技术现状,并总结了再生石墨及其产品的二次利用途径。基于此,建议强化石墨负极材料高效清洁利用及无害化处置产业化技术研发,进一步拓展再生石墨及其产品的利用途径。  相似文献   

7.
研究硅基负极在充放电及循环过程中的膨胀对开发下一代高比能锂离子动力电池具有重要意义。本工作采用商业化的SiO_(x)/Graphite为负极匹配高比能镍钴锰酸锂[Li(Ni_(0.8)Mn_(0.1)Co_(0.1))O_(2),NCM811]正极,组装了60 Ah大软包电池,并对其进行循环膨胀应力、应力增长机理与膨胀应力的改善等方面的研究。结果表明SiO_(x)材料的构成为3~5 nm Si颗粒分散在无定形的SiO_(2)内部,首次充放电比容量为1840.9/1380 mAh/g,库仑效率为75%。大软包电池单次充放电膨胀应力的变化为7320 N,约为石墨负极的4倍。工作温度越高容量衰减越快,衰减到70%SOH时,25、45和60℃对应的循环次数分别为980、850和500次,对应的最大膨胀应力分别为25107、25490、23667 N。此外,机理分析发现电池循环膨胀应力的增长和容量衰减之间为线性相关,CP(cross section polisher)-SEM分析发现膨胀应力的增加主要来自于SiO_(x)颗粒表面的破裂及副反应导致的SEI(solid electrolyte interphase)增厚。通过测定缓冲垫压缩曲线的方法筛选了合适的聚氨酯类缓冲垫,验证对循环无影响,但可以显著改善膨胀应力的增加,膨胀应力降低50%,这些结果将为更好地应用高比容量的硅基负极材料奠定基础。  相似文献   

8.
开发具有高离子传导率和高力学性能的薄型固态电解质对于制备高性能全固态锂金属电池非常重要。本工作首先制备了钴掺杂的二氧化铈(Co^(2+)@CeO_(2))纳米片,后将其与聚氧化乙烯(PEO)混合通过真空抽滤制得厚度仅为32μm的Co^(2+)@CeO_(2)层状复合固态电解质(L-CSE)。富含氧空位的Co^(2+)@CeO_(2)纳米片在提高离子电导率和力学性能方面发挥了重要作用,同时PEO作为黏结剂确保了电解质与电极之间的紧密接触并且增强了其柔韧性。通过改变Co的掺杂量调控纳米片上氧空位含量,重点探究了氧空位含量对Li^(+)传递特性的影响,并对L-CSE的结构组成、力学性能和电化学性能进行了系统研究。结果表明:通过调控Co的掺杂量能够准确控制纳米片上氧空位的含量,且0.33Co^(2+)@CeO_(2)纳米片表面的氧空位含量最多。所制备的L-CSE具有良好的力学性能(弹性模量达到1.147 GPa);30℃下,L-CSE的离子传导率达到5.81×10^(-5) S/cm;60℃下Li^(+)迁移数达到0.59。同时由于电解质与锂负极间具有较好的界面稳定性,在0.7 mA/cm^(2)的高电流密度下,组装的锂对称电池能稳定运行40 h。此外,所组装的磷酸铁锂(LFP)/L-CSE/Li固态电池也表现出良好的循环稳定性和倍率性能,在60℃、0.5 C下,能够稳定循环200次,容量保持率为83.6%;在2 C放电倍率下,放电比容量能达到120.7 mAh/g。  相似文献   

9.
探究不同涂炭层的涂炭铝箔对高能量密度磷酸铁锂(LiFePO_(4))动力电池的影响,以石墨+炭黑(GC)和炭黑(C)两种涂炭体系的涂炭铝箔制作的磷酸铁锂软包电池作为研究对象,评估了两种不同涂炭层对锂离子电池电化学性能的影响。物性对比结果显示,GC方案外观为深灰色,石墨与炭黑复合后具有大孔径的蓬松状结构,而C方案外观为黑色,由纳米级炭黑颗粒组成,呈现小孔径疏松状结构。结果显示GC复合涂炭层的黏结力为炭黑涂层的1.18倍。电化学性能结果表明,两种方案的首次库仑效率和放电平台一致性高,而GC方案的电荷转移阻抗更小。GC方案复合涂炭层更有利于提高电池的常温和高温循环性能,而C方案炭黑涂炭层可改善电池的大倍率和低温性能。  相似文献   

10.
本研究以三元NCM811为正极材料、人造石墨为负极材料制作了软包锂离子电池,并通过固定正极容量、变化负极容量的方式设计了三种不同N/P比,并对其初始容量、首效、初始内阻、倍率放电、高低温放电、高温存储、循环寿命等进行了研究。结果表明N/P比设计对电芯容量发挥、首效、初始内阻、高低温放电、高温存储、循环寿命均具有一定影响,对倍率放电无明显影响。提高N/P比将有利于正极材料的容量发挥,提高电芯的初始容量;但过高的N/P比会使正极电极电位偏高,电解液易在正极侧发生副反应,而低的N/P比可以使正极具有较低的电极电位,降低电池在高温存储、循环过程中过渡金属溶出和副反应发生,提高电芯的高温存储和循环性能。但N/P比过低时,Li+易在负极表面还原,造成活性锂损失,影响电芯循环性能。综合考察各项电性能,本研究最优N/P比设计为1.10。  相似文献   

11.
随着能源问题的出现,锂离子电池已成为人们关注的热点。本工作以18650型NCM811锂离子电池为研究对象,将电池过充至3个不同的截止电压(4.3 V、4.4 V、4.5 V)并循环一定的次数(180次)直到电池容量大幅度衰减,基于测试分析4.5 V过充循环电池的交流阻抗谱和容量增量曲线来定性和定量地研究电池容量衰减机理。研究发现活性锂离子的损失和活性材料的损失是电池容量衰减的主要原因,电池电导率的损失对电池容量衰减影响不大。通过绝热加速量热仪(adiabatic rate calorimeter,ARC)研究新电池,4.3 V、4.4 V和4.5 V过充循环电池在100%SOC下的热失控特征参数(自产热起始温度T_(1)、热失控触发温度T_(2)、热失控最高温度T_(3))。发现在热失控发生过程中,电池达到相同的温度时,4个电池的温升速率大小分别是新电池<4.3 V过充循环电池<4.4 V过充循环电池<4.5 V过充循环电池。电池在经过过充循环之后热稳定性变差。过充循环后,电池的自产热起始温度降低、热失控触发温度降低。  相似文献   

12.
力学性质是材料的本质属性之一,随着锂离子电池应用于电动汽车、智能电网领域,活性材料的力学特性开始受到关注。动力电池、储能电池的循环寿命需要达到几千次,活性材料晶胞亦经历几千次规律的膨胀、收缩,材料颗粒的力学劣化成为必须面对的新挑战。本文以团队的研究结果为主,总结了锂电池层状正极材料力学劣化机制和改善措施。首先,讨论了正极材料的力学研究基础,明确正极材料符合弹性形变,可以使用胡克方程分析;其次,回顾了正极材料力学劣化行为符合“损伤-断裂”模型,应力产生缺陷,逐渐积累直至断裂,电解液会沿着裂缝扩散至电池内部发生副反应,造成循环跳水;最后,总结了抑制材料力学劣化的主要策略,重点介绍了降低晶胞形变和表面构筑刚性层,降低晶胞变化是通过减小材料应变降低颗粒应力,表面构筑刚性层是阻挡电解液扩散至开裂的体相,这些策略都显著提高了材料的循环寿命。总的来说,电极材料的力学劣化是无法避免的,但可以通过合适的改善措施,延迟、减缓力学劣化的影响。  相似文献   

13.
锂离子电池电极是决定电池性能优劣的关键因素,在多孔电极理论基础上引入分形理论,重构电极的微结构,考虑结构参数以及温度对有效扩散系数的影响,推导出锂离子在固、液相中有效扩散系数的理论模型,对其影响因素进行分析;建立热-化耦合模型,分析热模型与电化学模型之间的关系;模拟放电过程,探究不同固、液相有效扩散系数对放电性能的影响。结果表明,液相中锂离子的有效扩散系数随面积分形维数、孔隙度以及温度增大而增大,随迂曲分形维数增大而减小;固相有效扩散系数随面积分形维数增大而减小;在相对高倍率放电的情况下,改变负极颗粒粒径大小及分布,使得电极微观结构发生变化,从而使锂离子在固、液相中有效扩散系数发生变化,进一步影响了电池的最大放电容量。本工作为锂离子电池电极的制造提供了基础理论参考。  相似文献   

14.
钠离子电池作为一种新型的能源储存技术得到越来越多的关注,尤其是在大规模储能领域具有明显的优势,有望部分取代锂离子电池。钠离子电池磷基负极材料具有高的理论容量和合适的储钠电位,因而受到广泛关注。但部分磷基材料导电性差和循环过程中体积变化大,使得其在产业化应用方面仍面临着严峻的挑战。本文针对磷基钠离子电池负极材料的研究进展,对红磷、黑磷、磷烯、金属磷化物的储钠机理、研究现状、改进策略进行了总结。目前,钠离子电池磷基负极材料的研究主要集中在导电材料复合和限域结构设计。另外,保护性/导电性涂层包覆、元素取代/掺杂改性、新型电解液的使用以及测试电化学窗口的调控也可改善磷基钠离子电池负极材料的电化学性能。富磷相的制备、储钠机理的确定、先进的检测技术和计算模拟的运用、电池配套组分和全电池的研究是未来金属磷化物钠离子电池负极材料的研究方向。  相似文献   

15.
电动汽车的普及是锂离子电池的主要需求来源之一。而电动汽车的充电性能是影响普及进程的一个重要的考量参数。在材料体系不变的情况下,取代传统恒流恒压充电策略的新型充电策略近10年内也吸引了很多研究者的关注。另外,新一代电池管理系统也对充电策略提出了更高的要求。本文阐述了各种优化的充电方法及其特点和应用。研究结果表明,与传统的恒流恒压充电策略相比,优化的充电方法可以减少充电时间,改善充电性能并有效延长电池寿命。最后,本文还提出了对未来优化充电策略的展望,希望未来在线辨识和实时更新的模型参数的方法或者通过在线的方法辨识特征信号带来更加强大的充电策略。  相似文献   

16.
软碳是快充型锂离子电池的候选负极材料之一,发展高功率的软碳是当前的研究热点。软碳的电化学性能主要取决于其微观结构,并显著依赖前驱体的碳化温度。本工作以针状焦衍生软碳为模型材料,借助扫描电子显微(SEM)技术、X射线光电子能谱(XPS)、X射线衍射(XRD)、激光拉曼(Raman)光谱及氮气等温吸附等表征手段,追踪了其在900~1700℃碳化温度下的结构演化,并通过循环伏安(CV)、恒流充放电(GCPL)、交流阻抗(EIS)等电化学表征方法解析了其微观结构与储锂动力学的相关性。结果表明,随着碳化温度的提高,软碳会出现三个结构占优阶段(无定形结构、乱层结构、石墨化结构),并对其电化学行为产生显著影响。其中,在无定形结构占优区域,软碳孔隙发达,储锂动力学较快,但容量较小(195 m Ah/g),库仑效率较低(<60%);在石墨化结构占优区域,软碳库仑效率较高(80%),但动力学缓慢;而在乱层结构占优阶段,软碳可获得最佳的微观结构,从而在可逆比容量、首次库仑效率和倍率性能之间取得平衡。该结果为合理设计高性能的快充型软碳负极材料提供了参考。  相似文献   

17.
理解电化学储能系统的构效关系将极大推动电极材料中新现象和新性能的发现与调控。然而,没有任何一种单一技术可以澄清电化学体系中复杂界面反应的所有问题,只有从多个角度进行观察才能看清被埋藏的界面和工作状态下的演变历程。由于大量储能材料富含过渡金属元素,其磁学性质与晶格结构、电子能带、电化学性能密切相关。因此,磁学测试分析可以揭示能源材料中的结构相变和局部电子分布等变化,解析物理化学反应机理,指导材料设计。围绕磁性表征技术,本文首先讨论了磁性测试的技术原理,随后总结介绍了磁性测试在研究电极材料物性结构表征以及电化学反应进程方面的研究进展,尤其介绍了原位实时磁性测试在阐明储能物理化学反应机理方面的独特优势。综合分析表明,原位磁性表征技术可以对电化学反应中的电荷转移进行高灵敏度、快速响应的测试表征,为揭示复杂界面电化学反应提供了新思路,在储能科学中具有广阔的应用前景。本文有助于了解磁性测试技术在电化学储能材料研究中的重要价值,并进一步推动磁性测试技术在储能领域的发展。  相似文献   

18.
钠离子电池被认为是一种极具潜力的二次电池体系,得到了国内外的广泛关注。硬碳是主要的钠离子电池的负极材料,但是,由于硬碳材料固有比容量较低,极大地限制了其全电池能量密度的提升。相比之下,磷资源丰富,且作为活性材料具备理论比容量高的优点,可用于发展磷基高比容量和长寿命的钠离子电池负极材料。本文通过对近期相关文献的探讨,综述了提高结构稳定性和电化学性能的一些有效策略。黑磷能够较为容易地通过机械的方法制备,并与石墨烯、多壁碳纳米管、科琴黑等碳材料复合,但是微观化学键的构建需要额外考虑,碳材料表面与黑磷化学键结合能够显著增强结构和储钠可逆性。此外,也可以引入导电高分子材料和部分典型的二维材料与黑磷复合,实现材料和电极微观结构优化,提供了提升电化学性能的重要方法,最后展望了黑磷作为钠离子电池负极材料的发展前景。  相似文献   

19.
锂离子电池热失控是由多种因素耦合而导致的结果,得到影响锂离子电池热失控影响因素的重要性程度对于提高电池安全性具有极大意义。对此,针对针刺导致的锂离子电池热失控,利用COMSOL软件仿真分析了不同针刺位置、速度、直径、SOC(state of charge)对锂离子电池单体针刺热失控影响,得到对单体电池热失控影响的重要因素。基于单体针刺热失控仿真结果,以4个锂离子电池单体组成的模组为研究对象,利用单因素仿真试验分析不同钢针直径R、电池SOC以及针刺电池个数N对电池模组热扩散影响;基于此,本文分析了针刺电池个数N、钢针直径R及电池SOC耦合作用热失控的正交试验。结果表明:相对于针刺位置、针刺速度对电池单体热失控影响,电池SOC和针刺直径R对电池单体热失控影响较为显著,且针刺直径R越小,单体电池热失控越剧烈;电池SOC越大,热失控时电池温度分布越不均匀;针刺直径R越大,模组热扩散需要时间越长;当SOC在100%~85%范围内时,模组内各电池单体的热失控最高温度变化较为明显;针刺电池个数N越大,模组热失控越剧烈,但位于模组中间位置的电池热失控最高温度有所降低。针刺电池个数N、SOC、针刺直径R对电池模组热失控温度和扩散时间的影响程度主次顺序为:N>R>SOC*R>SOC*N>N*R>SOC,其中,针刺电池个数N对电池模组热扩散影响最显著,且不同因素间的交互作用不容忽视。本工作为提高电池的安全性及电池设计提供了参考依据。  相似文献   

20.
锂离子电池电解液痕量水污染是导致电池产气和快速失效的重要原因,而过去对痕量水污染电芯缺乏无损检测分析技术。本工作基于超声无损成像技术对微量产气副反应的敏感性,对不同水含量电解液商用NCM523/AG软包电池化成、静置、循环过程中的产气行为进行了超声透射扫描成像,并结合EIS/SEM和充放电特性对其老化和失效机制进行了分析。结果表明痕量水的存在会造成电解液的损耗,加速气体生成,增加界面阻抗和极化电压,造成库仑效率降低和可逆容量衰减,加快电池失效过程。本研究对电池生产过程质量控制以及使用过程的失效机理分析具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号