首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郑洪河  石磊  高书燕  王键吉 《电化学》2005,11(3):298-303
应用循环伏安、恒电流充放电和电化学阻抗技术研究了尖晶石L iMn2O4于室温离子液体电解液中的电化学性质.实验表明,以室温离子液体作电解液,L iMn2O4的首次放电容量可达108.2 mAh/g、循环效率高于90%,温度和电流密度显著影响电极的电化学性能.交流阻抗测定了L i+在电极/电解液相界面迁移的活化能,为55 kJ/mol.根据界面反应的高活化能解释了L iMn2O4在该离子液体电解液中低温性能和倍率充放电性能不佳的原因.  相似文献   

2.
Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops. Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation. Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.  相似文献   

3.
摘要 运用EIS研究了LiCoO2正极在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中0~30℃范围内阻抗谱特征、SEI膜阻抗、电子电阻和电荷传递电阻等随温度的变化。结果表明,LiCoO2正极的EIS谱特征与温度有关,随温度的升高其低频区域在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中分别于10和20℃出现反映锂离子固态扩散的斜线。LiCoO2正极在 1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中,锂离子迁移通过SEI膜的离子跳跃能垒平均值分别为37.74和26.55KJ/mol;电子电导率的热激活化能平均值分别为39.08和53.81KJ/mol;嵌入反应活化能平均值分别为68.97和73.73KJ/mol。  相似文献   

4.
本文总结了Newman多孔电极理论的基本内容,提出若干改进思路. 提出基于离子-空穴耦合传输机制描述浓电解质中的离子输运过程,在此基础上引入离子-电子耦合转移反应的思想处理电极材料中的离子传输问题,并通过计算嵌锂材料的离子扩散系数验证其合理性. 总结了描述多孔电极多尺度结构的相关理论和技术,表明均质化方法和基于结构重建的介观模拟方法均能给出比较合理的有效输运参数,从而提高多孔电极理论模拟结果的准确性.  相似文献   

5.
Lithium‐ion (Li‐ion) cells have gained considerable attention in recent years as a power source for various applications owing to their high voltage, high energy density, low self‐discharge, and excellent cycle life. Polymeric materials play a pivotal role in the processing, performance, and safety of Li‐ion cells. The polymeric materials used in Li‐ion cells include: binder for electrode processing, separator, electrolyte, and electrode active material. Active research is being pursued in all of these areas to improve the energy density, power density, cycle life, and safety of Li‐ion cells. This review article gives an overview of the various polymeric materials used in Li‐ion cells and the recent advances in these materials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
借助电化学阻抗谱(EIS)和强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)技术, 采用不同纳米TiO2多孔薄膜对电极研究了染料敏化太阳电池(DSC)内部2个主要电荷输运过程的内在联系, 并探讨了载Pt材料对DSC界面动力学过程及电池宏观性能的影响机理. 借助等效电路模型分析了基于不同对电极材料电池的填充因子变化原因. 结果表明, 对电极材料的电极电荷交换过程制约光阳极膜内电子传输, 进而影响电池光伏性能; 同时对电极催化反应速率主要与催化剂活性、 载Pt材料电导率和催化反应面积有关.  相似文献   

7.
A mechanistic study of the fluoride electrode involving the impedance measurement technique was performed. The influence of the reference electrode, the fluoride ion concentration and the convection on the indicatrix were examined. From the results it followed that the linear equivalent model of the fluoride electrode may be represented by three components namely, a parallel R-C network representing the bulk of the membrane, two double layer capacities one on each side of the sensor, each shunted by a charge transfer resistor and finally, a diffusion impedance.  相似文献   

8.
Dependence on lithium‐ion batteries for automobile applications is rapidly increasing, and further improvement, especially for positive electrode materials, is indispensable to increase energy density of lithium‐ion batteries. In the past several years, many new lithium‐excess high‐capacity electrode materials with rocksalt‐related structures have been reported. These materials deliver high reversible capacity with cationic/anionic redox and percolative lithium migration in the oxide/oxyfluoride framework structures, and recent research progresses on these electrode materials are reviewed. Material design strategies for these lithium‐excess electrode materials are also described. Future possibility of high‐energy non‐aqueous batteries with advanced positive electrode materials is discussed for more details.  相似文献   

9.
Redox chemistry is the cornerstone of various electrochemical energy conversion and storage systems, associated with ion diffusion process. To actualize both high energy and power density in energy storage devices, both multiple electron transfer reaction and fast ion diffusion occurred in one electrode material are prerequisite. The existence forms of redox ions can lead to different electrochemical thermodynamic and kinetic properties. Here, we introduce novel colloid system, which includes multiple varying ion forms, multi‐interaction and abundant redox active sites. Unlike redox cations in solution and crystal materials, colloid system has specific reactivity‐structure relationship. In the colloidal ionic electrode, the occurrence of multiple‐electron redox reactions and fast ion diffusion leaded to ultrahigh specific capacitance and fast charge rate. The colloidal ionic supercapattery coupled with redox electrolyte provides a new potential technique for the comprehensive use of redox ions including cations and anions in electrode and electrolyte and a guiding design for the development of next‐generation high performance energy storage devices.  相似文献   

10.
As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.  相似文献   

11.
Supercapacitors store electrical energy by ion adsorption at the interface of the electrode‐electrolyte (electric double layer capacitance, EDLC) or through faradaic process involving direct transfer of electrons via oxidation/reduction reactions at one electrode to the other (pseudocapacitance). The present minireview describes the recent developments and progress of carbon‐transition metal oxides (C‐TMO) hybrid materials that show great promise as an efficient electrode towards supercapacitors among various material types. The review describes the synthetic methods and electrode preparation techniques along with the changes in the physical and chemical properties of each component in the hybrid materials. The critical factors in deriving both EDLC and pseudocapacitance storage mechanisms are also identified in the hope of pointing to the successful hybrid design principles. For example, a robust carbon‐metal oxide interaction was identified as most important in facilitating the charge transfer process and activating high energy storage mechanism, and thus methodologies to establish a strong carbon‐metal oxide contact are discussed. Finally, this article concludes with suggestions for the future development of the fabrication of high‐performance C‐TMO hybrid supercapacitor electrodes.  相似文献   

12.
对半导体材料进行表面化学修饰或改性,是提高其光催化活性、有效利用光能的一种重要措施.本文结合水热化学法、化学池沉积和后续热处理等,分别制备了未修饰α-Fe2O3和钒修饰的α-Fe2O3光电极材料.利用X射线粉末衍射(XRD)谱和紫外-可见漫反射光谱(UV-Vis-DRS)技术分析表征了材料的晶相结构、化学组成和光谱吸收等固体物理化学性能;利用光电流测量和电化学交流阻抗谱(EIS)实验技术,并基于1 mol·L-1NaOH (pH 13.6)中的光电化学水分解反应,研究了钒修饰对α-Fe2O3材料光电化学性能的增强作用.结果表明,与未修饰的Fe2O3材料相比,钒修饰α-Fe2O3样品出现FeVO4的XRD特征峰,但临界光吸收波长未发生红移;钒修饰使Fe2O3材料的光电流增大4-5倍、光生载流子在电极表面的复合几率降低了3/4-4/5、电极表面电荷传递速率(表观一级速率常数)明显提高.结合Fe2O3/溶液界面半导体能带模型和有关研究结果,分析了研究体系的界面电荷动力学传输过程以及钒修饰使α-Fe2O3材料光电化学性能增强的原因.  相似文献   

13.
A comparative study of the behavior of different sorts of three-phase electrodes applied for assessing the thermodynamics and kinetics of the ion transfer across the liquid/liquid (L/L) interface is presented. Two types of three-phase electrodes are compared, that is, a paraffin-impregnated graphite electrode at the surface of which a macroscopic droplet of an organic solvent is attached and an edge pyrolytic graphite electrode partly covered with a very thin film of the organic solvent. The organic solvent contains either decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato) as a redox probe. The role of the redox probe, the type of the electrode material, the mass transfer regime, and the effect of the uncompensated resistance are discussed. The overall electrochemical process at both three-phase electrodes proceeds as a coupled electron-ion transfer reaction. The ion transfer across the L/L interface, driven by the electrode reaction of the redox compound at the electrode/organic solvent interface, is independent of the type of redox probe. The ion transfer proceeds without involving any chemical coupling between the transferring ion and the redox probe. Both types of three-phase electrodes provide consistent results when applied for measuring the energy of the ion transfer. Under conditions of square-wave voltammetry, the coupled electron-ion transfer at the three-phase electrode is a quasireversible process, exhibiting the property known as "quasireversible maximum". The overall electron-ion transfer process at the three-phase electrode is controlled by the rate of the ion transfer. It is demonstrated for the first time that the three-phase electrode in combination with the quasireversible maximum is a new tool for assessing the kinetics of the ion transfer across the L/L interface.  相似文献   

14.
Sodium ion batteries have been developed using ionic liquids as electrolytes. Sodium is superior to lithium as a raw material for mass production of large‐scale batteries for energy storage due to its abundance and even distribution across the earth. Ionic liquids are non‐volatile and non‐flammable, which improved the safety of the batteries remarkably. In addition, operation temperatures were extended to higher values, improving the performance of the batteries by facilitating the reaction at the electrode and mass transfer. Binary systems of sodium and quaternary ammonium salts, such as 1‐ethyl‐3‐methylimidazolium and N‐methyl‐N‐propylpyrrolidinium bis(fluorosulfonyl)amide, were employed as electrolytes for sodium ion batteries. A series of positive and negative electrode materials were examined to be combined with these ionic liquid electrolytes. A 27 Ah full cell was fabricated employing sodium chromite (NaCrO2) and hard carbon as positive and negative electrode materials, respectively. The gravimetric energy density obtained for the battery was 75 Wh kg?1 and its volumetric energy density was 125 Wh L?1. The capacity retention after 500 cycles was 87 %. Further improvement of the cell performance and energy density is expected on development of suitable electrode materials and optimization of the cell design.  相似文献   

15.
A phosphate functionalized cysteamine self-assembled monolayer based on gold electrode is designed for uranyl ion (UO22+) detection. The response of the modified electrode is studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The EIS data are approximated using constant phase element (CPE) model from which kinetic and analytical parameters are evaluated. Uranyl ion is recognized based on blocking effect against charge transfer between p-benzoquinone as a probe and the modified electrode. This effect is detected from linear variation of charge transfer resistance (Rct) as a function of UO22+ concentration. From the analysis of the EIS data and approximated parameters, a method is developed for UO22+ determination based on impedimetric measurements.  相似文献   

16.
传统液体温差电池较低的热电转换性能一直无法得到有效改善,亟需寻找新的热电转换机制来提升热电转换效率。本文采用分子动力学(MD)方法,数值模拟研究了不同温度下以不同配比的甘油-水为溶剂的氯化钠溶液在碳纳米管(CNT)内离子、分子分布情况。结果表明:离子、分子的分布受温度影响较大,近壁面净电荷、电势分布随温度升高出现明显的分层。根据模拟结果提出以CNT为电极材料,甘油氯化钠溶液或甘油水氯化钠溶液为电解质溶液组成温差电池。其热电转换性能远优于大多数温差电池,同时温度适用范围也显著增加。以多孔碳为电极材料,甘油氯化钠溶液为电解质溶液组成的热电转换装置实验验证了可行性。  相似文献   

17.
丁磺酸内酯对锂离子电池性能及负极界面的影响   总被引:5,自引:0,他引:5  
用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱分析(EDS)及理论计算等方法研究了添加剂丁磺酸内酯(BS)对锂离子电池负极界面性质的影响. 研究表明, 在初次循环过程中, BS具有较低的最低空轨道能量, 优先于溶剂在石墨电极上还原分解, 并形成固体电解质相界面膜(SEI膜). 在含BS的电解液中形成的SEI膜的热稳定性高, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小基本保持不变, 而在不含BS的电解液中形成的SEI膜的热稳定性较差, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小有明显的增加. 从BS对锂离子电池电化学性能影响的研究表明, 加入少量的BS能够显著提高锂离子电池的室温放电容量、低温及高温储存放电性能.  相似文献   

18.
碳材料具有价格低廉、 易制备、 环境友好、 导电性高、 比表面积大以及适合离子存储和迁移等优点, 已成为目前应用于电化学储能器件电极的重要材料之一. 石墨炔(GDY)是一种新型的二维碳同素异形体, 由sp2碳杂化形式的苯环和sp碳杂化形式的炔键构成. 这种独特的化学结构一方面保持了碳材料良好的导电特性, 另一方面形成了新颖的离子传输通道, 为碳材料带来了不同的离子传输和存储特性. 与此同时, 由于石墨炔的空间结构可调性, 可以通过引入异原子微调石墨炔电子结构, 拓展石墨炔在电极材料领域的应用. 本文重点对近几年异原子杂化石墨炔基电极材料在锂离子电池、 钠离子电池、 金属硫电池、 电容器、 金属空气电池和电极保护等储能领域的研究工作进行总结, 并对未来石墨炔类材料在储能领域的发展进行了展望.  相似文献   

19.
Rechargeable batteries are considered one of the most effective energy storage technologies to bridge the production and consumption of renewable energy. The further development of rechargeable batteries with characteristics such as high energy density, low cost, safety, and a long cycle life is required to meet the ever‐increasing energy‐storage demands. This Review highlights the progress achieved with halide‐based materials in rechargeable batteries, including the use of halide electrodes, bulk and/or surface halogen‐doping of electrodes, electrolyte design, and additives that enable fast ion shuttling and stable electrode/electrolyte interfaces, as well as realization of new battery chemistry. Battery chemistry based on monovalent cation, multivalent cation, anion, and dual‐ion transfer is covered. This Review aims to promote the understanding of halide‐based materials to stimulate further research and development in the area of high‐performance rechargeable batteries. It also offers a perspective on the exploration of new materials and systems for electrochemical energy storage.  相似文献   

20.
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号