首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

2.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

3.
The aim of this article is to study the quasistatic evolution of a three-dimensional elastic-perfectly plastic solid which satisfies the Prandtl-Reuss law. The evolution of the field of stresses -which solves a time dependent variational inequality — and that of the field of displacements u, have been described in previous works [15], [26], [35], [36], [37] but it was not shown there that and u satisfy indeed the Prandtl-Reuss constitutive law. In this article we find and u in a class of functions which are sufficiently regular for the Prandtl-Reuss law to make sense and we prove that and u satisfy the constitutive law. This result is attained by considering the elastic-perfectly plastic model as the limit of a family of elastic-visco-plastic models like those of Norton and Hoff. The Norton-Hoff type models which we introduce depend on a viscosity parameter > 0; we study the perturbed models (i.e. > 0 fixed) and then we pass to the limit 0.Dedicated to James Serrin on the occasion of his 60th Birthday  相似文献   

4.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

5.
Chernyi’s series method[1] is not proper for the case that(γ-l)/(γ+l)<<2/(γ+1)×M2sin2β (γ=cp/cv-adiabatic index number, M-Much number, β-shock incidence). In this paper, we only suppose that in the neighbour of the shock, there exists a shock layer in which the density of the gas is very big, but we do not remove the case that (γ-1)/(γ+1)<<2/(γ+1)M2sin2β.  相似文献   

6.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

7.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

8.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

9.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

10.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

11.
The flow of 3 to 100 wppm aqueous solutions of a polyethyleneoxide polymer,M w=6.2×;106, was studied in a 10.2 mm i.d. pipe lined with 0.15 mm V-groove riblets, at diametral Reynolds numbers from 300 to 150000. Measurements in the riblet pipe were accompanied by simultaneous measurements in a smooth pipe of the same diameter placed in tandem. The chosen conditions provided turbulent drag reductions from zero to the asymptotic maximum possible. The onset of polymer-induced drag reduction in the riblet pipe occurred at the same wall shear stress, * w =0.65 N/m2, as that in the smooth pipe. After onset, the polymer solutions in the riblet pipe initially exhibited linear segments on Prandtl-Karman coordinates, akin to those seen in the smooth pipe, with specific slope increment . The maximum drag reduction observed in the riblet pipe was independent of polymer concentration and well below the asymptotic maximum drag reduction observed in the smooth pipe. Polymer solution flows in the riblet pipe exhibited three regimes: (i) Hydraulically smooth, in which riblets induced no drag reduction, amid varying, and considerable, polymer-induced drag reduction; this regime extended to non-dimensional riblet heightsh +<5 in solvent andh +<10 in polymer solutions. (ii) Riblet drag reduction, in which riblet-induced flow enhancementR>0; this regime extended from 5<h +<22 in solvent and from 10<h +<30 in the 3 wppm polymer solution, with respective maximaR=0.6 ath +=14 andR=1.6 ath +=21. Riblet drag reduction decreased with increasing polymer concentration and increasing polymer-induced flow enhancement S. (iii) Riblet drag enhancement, whereinR<0; this regime extended for 22<h +<110 in solvent, withR;–2 forh +>70, and was observed in all polymer solutions at highh +, the more so as polymer-induced drag reduction increased, withR<0 for allS>8. The greatest drag enhancement in polymer solutions,R=–7±1 ath +=55 whereS=20, considerably exceeded that in solvent. Three-dimensional representations of riblet- and polymer-induced drag reductions versus turbulent flow parameters revealed a hitherto unknown dome region, 8<h +<31, 0<S<10, 0<R<1.5, containing a broad maximum at (h +,S,R) = (18, 5, 1.5). The existence of a dome was physically interpreted to suggest that riblets and polymers reduce drag by separate mechanisms.  相似文献   

12.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

13.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

14.
We find the asymptotic behavior of the homogenized coefficients of elasticity for the chess-board structure. In the chess board white and black cells are isotropic and have Lamé constants (, ,) and (, ) respectively. We assume that the black cells are soft, so 0. It turns out that the Poisson ratio for this composite tends to zero with .  相似文献   

15.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

16.
Shear softening and thixotropic properties of wheat flour doughs are demonstrated in dynamic testing with a constant stress rheometer. This behaviour appears beyond the strictly linear domain (strain amplitude 0 0.2%),G,G and |*| decreasing with 0, the strain response to a sine stress wave yet retaining a sinusoidal shape. It is also shown thatG recovers progressively in function of rest time. In this domain, as well as in the strictly linear domain, the Cox-Merz rule did not apply but() and | *())| may be superimposed by using a shift factor, its value decreasing in the former domain when 0 increases. Beyond a strain amplitude of about 10–20%, the strain response is progressively distorted and the shear softening effects become irreversible following rest.  相似文献   

17.
Summary The subject of this article is the thermodynamics of perfect elastic-plastic materials undergoing unidimensional, but not necessarily isothermal, deformations. The first and second laws of thermodynamics are employed in a form in which only the following quantities appear: the temperature , the elastic strain e, the plastic strain p, the elastic modulus (gq), the yield strain (gq), the heat capacity (e, p,), the latent elastic heat e(e, p, ), and the latent plastic heat p(e, p, ). Relations among the response functions , , , e, and p are derived, and it is shown that a set of these relations gives a necessary and sufficient condition for compliance with the laws of thermodynamics. Some observations are made about the existence and uniqueness of energy and entropy as functions of state.Dedicated to Clifford Truesdell on the occasion of his 60th birthdayThis research was supported by the U.S. National Science Foundation.  相似文献   

18.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

19.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

20.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号