首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
探讨了Purex流程中洗锝(TcS)工艺段的关键工艺参数,对其进行了优化,并用混合澄清槽台架进行了验证。结果表明:TcS工艺段最优工艺的确定,一方面要满足后续工艺段对Tc浓度的要求,同时须考虑后处理厂整体运行的经济性,以确定合理的Tc净化系数;TcS工艺段TcSW中HNO3浓度在4~4.5mol/L范围内,既能满足Tc净化系数最大,又能减少U、Pu的损失;根据确定的Tc净化系数,可确定1AP与TcSS1+TcSS2的最佳流比;在总酸量固定的条件下,TcSS1、TcSS2酸度和流比分配对Tc净化系数影响不大,较低的TcSS2酸度有利于降低TcSP的酸度,同时进入TcSW的U、Pu更少。  相似文献   

2.
Purex流程共去污工艺计算机稳态模拟   总被引:5,自引:3,他引:5  
在萃取串级理论基础上,建立了模拟“分液漏斗法”串级萃取实验操作的数学模型,编写了HNO3、U和Pu体系的稳态模拟程序。利用文献报道的实验数据和计算数据,对该程序进行了验证。结果表明,该程序模拟萃取器逐渐达到稳态的过程中,各组分的浓度剖面与实验结果符合良好。在此基础上,利用该程序对1A工艺进行了安全分析和工艺寻优计算。结果表明,1AS流量变化对U、Pu收率的影响不大,1AX和1AF流量变化对U、Pu收率影响大。提高洗涤液酸度有利于扩展工艺操作弹性范围,但不利于U对稀土的去污。  相似文献   

3.
通过单级实验,研究了不同铀饱和度、酸度、温度条件下30%TBP对锆、钌的萃取规律,在此基础上确定了提高1A净化锆、钌的工艺,并进行了台架实验验证。研究结果表明:提高铀饱和度、温度和酸度有助于降低钌在30%TBP中的分配比;在30%TBP中,高铀饱和度条件下,锆分配比受铀饱和度的影响远大于水相硝酸浓度的影响;温度对锆的分配比影响不显著。当1A槽采用4mol/L硝酸进料、4mol/L硝酸洗涤时,45℃条件下,铀、钚的回收率达99.98%,钌的去污系数约达到105。  相似文献   

4.
利用与Purex流程相关的基础数据,开展Purex流程计算机模拟研究并形成模拟程序,能够开展工艺条件分析和工艺优化工作,具有重要的应用价值。国外对于此类研究开展的较早,在分配比模型研究上形成了以Richardson模型为代表的半理论模型;混合澄清槽和脉冲萃取柱的计算机模拟也分别在全混模型和扩散模型的基础上开展了大量的研究工作,形成了较多的模拟程序。我国开展此类研究稍晚,仅在分配比模型和混合澄清槽模拟方面开展了部分研究工作,与国外存在较大的差距。  相似文献   

5.
乏燃料后处理Purex流程中的铀钚共去污工艺(1A)是整个化学分离过程的关键环节之一,该工艺计算机模拟计算对1A进行流程优化和安全分析具有重要意义。  相似文献   

6.
锝是乏燃料后处理工艺中广泛关注的元素,锝的裂变产额高,行为复杂,对铀钚分离工艺过程的影响较大。锝的萃取行为是影响锝在Purex流程中走向的关键因素,而萃取动力学则是研究其萃取行为的一个重要方面,不仅可为认识过程机制提供参考,而且能够提供有实用价值的数据。关于锝萃取动力学的研究目前鲜见报道,因此,有必要开展这方面的研究工作。  相似文献   

7.
在多级逆流萃取MESH方程基础上,基于拟Newton算法编写了用于模拟Purex萃取流程的计算机程序,使用SEPHIS分配比模型,分别以1A、2D槽工艺条件为例,计算了其各级出口的U、Pu酸浓度。程序计算结果与实验浓度剖面符合很好。相对于已有的一些计算机模拟程序,该程序具有适用性广、收敛性强的特点。  相似文献   

8.
在铀钚分离工艺单元单级数学模型和混合澄清槽瞬态数学模型的基础上,建立了以U(Ⅳ)-N2H4为还原反萃剂、混合澄清槽为萃取设备的Purex流程铀钚分离工艺单元数学模型,开发了计算机模拟程序,并使用台架实验数据对程序的可靠性进行了验证。结果表明,模拟程序的计算值和实验值符合良好。在此基础上,利用模拟软件对铀钚分离工艺单元的工艺参数进行了计算分析,结果表明:1BX1加入位置、1BS和1BX2酸度对钚反萃率无太大影响,但1BX1加入位置和补萃级数对钚中去铀系数SFU/Pu有一定影响。  相似文献   

9.
在乏燃料后处理Purex流程中,共去污循环的安全稳定运行是整个生产过程的关键之一。Pu(Ⅵ)在TBP中的分配系数比Pu(Ⅳ)的低而易导致钚流失。文章采用计算机模拟1A萃取槽中UO2+2、HNO3、Pu4+、PuO2+2的运行。计算结果表明,Pu(Ⅵ)的流失是造成钚收率降低的主要因素之一,提高Pu(Ⅵ)的收率能够有效提高钚产品的收率。当1AF中ρ(U)=225g/L、c(HNO3)=3.0mol/L、ρ(Pu)=2.20g/L,1AS中c(HNO3)=3.0mol/L,1AX为30%TBP/煤油,流比1AF∶1AS∶1AX=1.25∶0.75∶3.00时,为使1A萃取槽中钚的收率不低于99.9%,应控制1AF料液中Pu(Ⅵ)量(占总Pu百分数)不超过7%。  相似文献   

10.
在HNO3-U(Ⅳ)-N2H4-Tc(Ⅶ)-Np(Ⅴ)体系中,Np(Ⅴ)迅速还原为Np(Ⅳ)。对比研究表明,Tc是该体系中Np(Ⅴ)迅速还原的主要原因。该体系中的主要反应是U(Ⅳ)将Tc(Ⅶ)还原为Tc(Ⅳ),进而Tc(Ⅳ)将Np(Ⅴ)还原为Np(Ⅳ)。本文通过串级和台架实验研究了该体系中锝对镎走向的影响。结果表明,Np(Ⅴ)的还原速度随HNO3浓度、初始Tc浓度的增大和温度的升高而加快。在模拟Purex流程铀钚分离工艺的条件下,试管串级和微型混合澄清槽台架实验结果表明,提高1AP料液中Tc(Ⅶ)的浓度、升高反应温度,Np进入1BU中的百分含量增加。  相似文献   

11.
在Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷分配比模型的基础上,使用串级萃取理论编写了Thorex流程钍铀分离工艺单元(1B)的计算机模拟程序,该程序可对钍、铀、硝酸的萃取行为进行模拟计算。通过文献数据对该程序的可靠性进行了验证,结果表明,该程序的计算值与文献值符合良好。在此基础上利用该模拟程序对钍铀分离单元的工艺参数进行了计算分析,结果表明:工艺运行状况受工艺参数的综合影响,其中反萃液(1BX)硝酸浓度是影响因素之一,铀产品(1BU)中钍含量随酸度的增大而增大,而钍产品(1BT)中铀含量则随酸度的增大而降低,酸度过大或过小均不能实现二者的良好分离;1BX流比对分离效果的影响与酸度相反,随着1BX流比的增大,1BU中钍含量显著降低,而1BT中铀含量增大;补萃剂(1BS)流比对分离效果的影响与1BX流比的影响趋势相反,因此在工艺寻优中可利用本程序选择分离效果最好的条件组合。此外,还可利用本程序进行其他工艺要求的钍铀分离工艺参数寻优计算等。  相似文献   

12.
研究给出了分光光度法和X射线荧光法分析乏燃料后处理模拟工艺料液中锆的适用条件和分析步骤。对经IBP萃取过或从TBP中反萃制备的样品,用二甲酚橙或偶氮砷Ⅲ做显色剂的分光光度法分析是不可行的,建议采用X射线荧光分法分析样品中的锆。  相似文献   

13.
将归一化的“Van der Waals”半径引入空间堆积模型,对百余种锝化合物结构中配体的立体角系数之总和进行了计算,发现存在一个以0.97为中心,以0.13(不大于常见配体的立体角系数)为特征误差的稳定区间,它反映了锝周围配体堆积的限度,对预测和设计锝化合物很有启示。  相似文献   

14.
在扩散模型的基础上,对共去污单元脉冲萃取柱"切片"数学处理,建立了数学模型,模型中添加了多组分共存分配比计算模块,编写完成了可用于模拟计算共去污单元脉冲萃取柱萃取HNO3、U(Ⅵ)、Pu(Ⅳ)稳态计算程序。利用文献报道的实验数据,对程序进行了验证。结果表明,程序模拟计算的各组分稳态浓度剖面与实测值符合良好,程序可以实现共去污单元多组分共萃的模拟计算。并在此基础上,利用该程序对1A脉冲萃取柱工艺设计进行了初步研究计算。结果表明,脉冲萃取柱的萃取效率与处理料液组分浓度有关,以往一级混合澄清槽等于若干米脉冲柱的设计方法认识有所偏差,应使用计算机模拟方法整体设计脉冲萃取柱。  相似文献   

15.
PUREX流程为当前后处理工业的主流流程,其计算机模拟研究为研究热点。国外一些国家已进行全流程模拟计算,能够开展工艺条件分析和工艺优化工作,具有重要的应用价值。铀钚分离工艺单元(1B)和钚反萃单元(2B)是PUREX流程的重要环节,二者计算机模拟的基础为钚的还原反萃单元模型。本文总结了国外PUREX流程计算模拟程序中的钚还原反萃模型的研究进展,重点对模型的建立和算法做了介绍。  相似文献   

16.
1 引言 溶胶-凝胶工艺包括水解和聚合两个阶段。尽管聚合产物、反应速率、还有pH值和不同的添加剂对这两个阶段速率产生的影响可以通过实验获得,但是聚合的机理并不清楚,只能通过实验结果来推断。例如,反应物(如单体)和产物(如二聚物和多聚物)可以通过某个实验观察得到,但是其中间物和反应途径不清楚,并且反应机理只能被推断。为了更详细地了解聚合过程早期阶段的动力学原理,我们应用分子动力学计算机模拟技术研究Si(OH)4分子的相互作用和动力学行为,以及这些分子间的反应和分子长大成团簇的机理。采用硅酸分子进行研究的原因如下。  相似文献   

17.
本文利用双类电荷片(Two Specics—Charge Sheet)模型,对等离子体中漂流不稳定性的激发条件进行了计算机模拟,所得结果与理论分析所指出的相一致。  相似文献   

18.
CMOS集成电路在LSI、VLSI中占有显著地位,它是当今乃至今后一段时期集成电路发展的主流。研究CMOSIC沟道、P~-阱注入杂质的分布和再分布规律,对于指导工艺实践和提高电路性能具有现实意义。  相似文献   

19.
系统地完成了核测井中粒子随机游动的数学模型的建立和计算机模拟过程的实现.对于核测井问题,利用Monte-Carlo方法模拟和跟踪了粒子的随机游动,进行了探测器计数响应值无偏统计量的数学估计;针对实现粒子随机游动的计算机模拟,选用MORSE程序完成了一测井实例.结果表明:利用此理论模型可以完成核测井问题中计数响应值的数值计算.  相似文献   

20.
在MATLAB软件平台上,利用文献报道的610组U(Ⅳ)分配比数据分别对美国、印度及日本提出的3种不同的U(Ⅳ)分配比模型函数进行了验证,验证结果表明:3种模型计算值与实验值的相对偏差均至少在20%以上,其中以美国研究者提出的U(Ⅳ)分配比模型计算效果最佳,但仍无法直接用于模拟计算U(Ⅳ)的分配比。因此,为得到相对偏差较低的U(Ⅳ)分配比模型,以美国研究者提出的模型为基础进行修正,修正后的模型为D(U(Ⅳ))=K*(U(Ⅳ))c2(fTBP),其中K*(U(Ⅳ))=(1.4/(30×c(U(Ⅳ))+1))×K*(U(Ⅵ))×(0.054 1+0.000 658×c2(NO-3)),该模型使用范围为:平衡水相硝酸浓度为0.4~4.0mol/L,U(Ⅳ)质量浓度为5~50g/L,U(Ⅵ)质量浓度为15~150g/L,Pu(Ⅲ)质量浓度为0.4~36.3g/L,肼浓度为7×10-4~2mol/L,相对偏差在±15%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号