首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C2 domain is a Ca2+-dependent, membrane-targeting motif originally discovered in protein kinase C and recently identified in numerous eukaryotic signal-transducing proteins, including cytosolic phospholipase A2 (cPLA2) of the vertebrate inflammation pathway. Intracellular Ca2+ signals recruit the C2 domain of cPLA2 to cellular membranes where the enzymatic domain hydrolyzes specific lipids to release arachidonic acid, thereby initiating the inflammatory response. Equilibrium binding and stopped-flow kinetic experiments reveal that the C2 domain of human cPLA2 binds two Ca2+ ions with positive cooperativity, yielding a conformational change and membrane docking. When Ca2+ is removed, the two Ca2+ ions dissociate rapidly and virtually simultaneously from the isolated domain in solution. In contrast, the Ca2+-binding sites become occluded in the membrane-bound complex such that Ca2+ binding and dissociation are slowed. Dissociation of the two Ca2+ ions from the membrane-bound domain is an ordered sequential process, and release of the domain from the membrane is simultaneous with dissociation of the second ion. Thus, the Ca2+-signaling cycle of the C2 domain passes through an active, membrane-bound state possessing two occluded Ca2+ ions, one of which is essential for maintenance of the protein-membrane complex.  相似文献   

2.
Recoverin is a 23 kDa myristoylated Ca2+-binding protein that inhibits rhodopsin kinase. We have used surface plasmon resonance to investigate the influences of Ca2+, myristoylation, and adenine nucleotides on the recoverin-rhodopsin kinase interaction. Our analyses confirmed that Ca2+ is required for recoverin to bind RK. Myristoylation had little effect on the affinity of recoverin for the kinase, but it raised the K0.5 for Ca2+ from 150 nM for nonacylated recoverin to 400 nM for myristoylated recoverin. Finally, our studies also revealed two separate and previously unreported effects of adenine nucleotides on the recoverin-rhodopsin kinase binding. The interaction is weakened by autophosphorylation of the kinase, and it is strengthened by the presence of ADP.  相似文献   

3.
4.
Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage-activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between approximately 80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.  相似文献   

5.
Over the last decade, nursing in the United Kingdom has witnessed a major development and expansion in the number of Clinical Nurse Specialists. These nurses are considered to be experts in their own specialities, have in-depth knowledge and provide a service for patients, relatives and staff. There is, however, a paucity of literature relating to role transition from experienced Staff Nurse to Clinical Nurse Specialist. Using Nicholson's (1984) model of work-role transition and Wanous' (1992) four-stage model of organizational socialization, this study explores the transition of two nurses from experienced Staff Nurses to novice Clinical Nurse Specialists.  相似文献   

6.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

7.
Mast cells secrete a variety of biologically active substances that mediate inflammatory responses. Synaptotagmin(s) (Syts) are a gene family of proteins that are implicated in the control of Ca2+-dependent exocytosis. In the present study, we investigated the possible occurrence and functional involvement of Syt in the control of mast cell exocytosis. Here, we demonstrate that both connective tissue type and mucosal-like mast cells express Syt-immunoreactive proteins, and that these proteins are localized almost exclusively to their secretory granules. Furthermore, expression of Syt I, the neuronal Ca2+ sensor, in rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mucosal mast cells, resulted in prominent potentiation and acceleration of Ca2+-dependent exocytosis. Therefore, these findings implicate Syt as a Ca2+ sensor that mediates regulated secretion in mast cells to calcium ionophore.  相似文献   

8.
Docking of C2 domains to target membranes is initiated by the binding of multiple Ca2+ ions to a conserved array of residues imbedded within three otherwise variable Ca2+-binding loops. We have located the membrane-docking surface on the Ca2+-activated C2 domain of cPLA2 by engineering a single cysteine substitution at 16 different locations widely distributed across the domain surface, in each case generating a unique attachment site for a fluorescein probe. The environmental sensitivity of the fluorescein-labeled cysteines enabled identification of a localized region that is perturbed by Ca2+ binding and membrane docking. Ca2+ binding to the domain altered the emission intensity of six fluoresceins in the region containing the Ca2+-binding loops, indicating that Ca2+-triggered environmental changes are localized to this region. Similarly, membrane docking increased the protonation of six fluoresceins within the Ca2+-binding loop region, indicating that these three loops also are directly involved in membrane docking. Furthermore, iodide quenching measurements revealed that membrane docking sequesters three fluorescein labeling positions, Phe35, Asn64, and Tyr96, from collisions with aqueous iodide ion. These sequestered residues are located within the identified membrane-docking region, one in each of the three Ca2+-binding loops. Finally, cysteine substitution alone was sufficient to dramatically reduce membrane affinity only at positions Phe35 and Tyr96, highlighting the importance of these two loop residues in membrane docking. Together, the results indicate that the membrane-docking surface of the C2 domain is localized to the same surface that cooperatively binds a pair of Ca2+ ions, and that the three Ca2+-binding loops themselves provide most or all of the membrane contacts. These and other results further support a general model for the membrane specificity of the C2 domain in which the variable Ca2+-binding loops provide headgroup recognition at a protein-membrane interface stabilized by multiple Ca2+ ions.  相似文献   

9.
C2-domains are widespread protein modules with diverse Ca2+-regulatory functions. Although multiple Ca2+ ions are known to bind at the tip of several C2-domains, the exact number of Ca2+-binding sites and their functional relevance are unknown. The first C2-domain of synaptotagmin I is believed to play a key role in neurotransmitter release via its Ca2+-dependent interactions with syntaxin and phospholipids. We have studied the Ca2+-binding mode of this C2-domain as a prototypical C2-domain using NMR spectroscopy and site-directed mutagenesis. The C2-domain is an elliptical module composed of a beta-sandwich with a long axis of 50 A. Our results reveal that the C2-domain binds three Ca2+ ions in a tight cluster spanning only 6 A at the tip of the module. The Ca2+-binding region is formed by two loops whose conformation is stabilized by Ca2+ binding. Binding involves one serine and five aspartate residues that are conserved in numerous C2-domains. All three Ca2+ ions are required for the interactions of the C2-domain with syntaxin and phospholipids. These results support an electrostatic switch model for C2-domain function whereby the beta-sheets of the domain provide a fixed scaffold for the Ca2+-binding loops, and whereby interactions with target molecules are triggered by a Ca2+-induced switch in electrostatic potential.  相似文献   

10.
C-type animal lectins are a diverse family of proteins which mediate cell-surface carbohydrate-recognition events through a conserved carbohydrate-recognition domain (CRD). Most members of this family possess a carbohydrate-binding activity that depends strictly on the binding of Ca2+ at two sites, designated 1 and 2, in the CRD. The structural transitions associated with Ca2+ binding in C-type lectins have been investigated by determining high-resolution crystal structures of rat serum mannose-binding protein (MBP) bound to one Ho3+ in place of Ca2+, and the apo form of rat liver MBP. The removal of Ca2+ does not affect the core structure of the CRD, but dramatic conformational changes occur in the loops. The most significant structural change in the absence of Ca2+ is the isomerization of a cis-peptide bond preceding a conserved proline residue in Ca2+ site 2. This bond adopts the cis conformation in all Ca2+-bound structures, whereas both cis and trans conformations are observed in the absence of Ca2+. The pattern of structural changes in the three loops that interact with Ca2+ is dictated in large part by the conformation of the prolyl peptide bond. The highly conserved nature of Ca2+ site 2 suggests that the transitions observed in MBPs are general features of Ca2+ binding in C-type lectins.  相似文献   

11.
12.
In this work, we explored the relationship between the freely exchangeable Ca2+ (FECa2+) in the dense tubules (DT) and the sarco(endo)plasmic reticulum (SER) Ca2+-ATPase (SERCA) in circulating human platelets and examined the relationship between blood pressure (BP) and these platelet parameters. Studying platelets from 32 healthy men, we showed that the maximal reaction velocity (Vmax) of the SERCA significantly correlated with FECa2+ in the DT and with the protein expressions of SERCA 2 and 3. BP positively correlated with both the Vmax of the SERCA (r=.462, P=.010) and the FECa2+ sequestered in the DT (r=.492, P=.005). The relationships between these platelet Ca2+ parameters and BP were in part confounded by increased levels of serum triglycerides and diminished HDL cholesterol with a higher BP. No correlation was observed between the resting cytosolic Ca2+ and BP. Collectively, these findings indicate that (1) an increase in the cellular Ca2+ load in platelets is expressed by a higher activity of the SERCA and an increase in the expressions of SERCA 2 and 3 proteins, coupled with an increase in the FECa2+ in the DT, and (2) a higher BP is associated with an increase in platelet Ca2+ load in human beings, expressed by a rise in the FECa2+ in the DT and the upregulation of SERCA activity.  相似文献   

13.
The Ca2+-dependent activator protein of myosin light-chain kinase, which was identified as the bovine brain modulator protein of cyclic nucleotide phosphodiesterase, was isolated from rabbit skeletal muscle. The purified protein binds about 2 Ca2+ per mol in a medium containing 5 mM MgCl2, 10 micron CaCl2, and 0.1 M KCl at pH 6.8. The Ca2+ binding caused a conformational change of the activator protein which was measured by difference ultraviolet absorption spectroscopy. In the same Ca2+ concentration range as that causing the conformational change, activation of myosin light-chain kinase was observed.  相似文献   

14.
We reviewed the prevalence of thrombocytosis (platelet count >/=400, 000/microL) and its association with outcome in 135 consecutive endometrial carcinoma patients and compared the platelet count with other prognostic factors. Nineteen of 135 patients (14%) had thrombocytosis. Thrombocytosis was significantly more frequent in advanced disease (stage II-IV), unfavorable grade (G2 and G3), deep myometrial invasion, and lymph-vascular space invasion. The overall 5-year survival rate was 92%. The 5-year survival rate of the 19 patients with thrombocytosis was significantly worse than that of the patients without thrombocytosis (61 vs 96%, P < 0.0001). The recurrence rate was significantly higher in patients with thrombocytosis than in those with a platelet count <400,000/microL (7 vs 32%, P < 0.005). In a multivariate analysis, thrombocytosis continued to be a predictor of worse prognosis. In conclusion, we found thrombocytosis to be a prognostic factor for survival in patients with endometrial carcinoma.  相似文献   

15.
Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.  相似文献   

16.
17.
The Ca2+-activated fusion of large dense core vesicles (LDCVs) with the plasma membrane is reconstituted in mechanically permeabilized PC12 cells by provision of millimolar MgATP and cytosolic proteins. Ca2+-activated LDCV exocytosis was inhibited completely by the type E but not the type A botulinum neurotoxin (BoNT) even though both BoNTs were equally effective in proteolytically cleaving the synaptosome-associated protein of 25 kDa (SNAP-25). The greater inhibition of exocytosis by BoNT E correlated with a greater destabilization of detergent-extracted complexes consisting of SNAP-25, synaptobrevin, and syntaxin. LDCVs in permeable PC12 cells can be poised at a late postdocking, prefusion state by MgATP-dependent priming processes catalyzed by N-ethylmaleimide sensitive factor and priming in exocytosis proteins. BoNT E completely blocked Ca2+-activated LDCV exocytosis in ATP-primed cells, whereas BoNT A was only slightly inhibitory, implying that the C-terminal region of SNAP-25 (Ile181-Gln197) between the cleavage sites for BoNT E and BoNT A is essential for late postdocking steps. A required role for SNAP-25 at this stage was also indicated by inhibition of Ca2+-activated LDCV fusion in ATP-primed cells by a C-terminal peptide antibody. We conclude that plasma membrane SNAP-25, particularly residues 181-197, is required for Ca2+-regulated membrane fusion at a step beyond LDCV docking and ATP utilization.  相似文献   

18.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

19.
Ca2+-dependent protein kinases and stress signal transduction in plants   总被引:1,自引:0,他引:1  
  相似文献   

20.
Presynaptic N-type calcium channels interact with syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) through a binding site in the intracellular loop connecting domains II and III of the alpha1 subunit. This binding region was loaded into embryonic spinal neurons of Xenopus by early blastomere injection. After culturing, synaptic transmission of peptide-loaded and control cells was compared by measuring postsynaptic responses under different external Ca2+ concentrations. The relative transmitter release of injected neurons was reduced by approximately 25% at physiological Ca2+ concentration, whereas injection of the corresponding region of the L-type Ca2+ channel had virtually no effect. When applied to a theoretical model, these results imply that 70% of the formerly linked vesicles have been uncoupled after action of the peptide. Our data suggest that severing the physical interaction between presynaptic calcium channels and synaptic proteins will not prevent synaptic transmission at this synapse but will make it less efficient by shifting its Ca2+ dependence to higher values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号