首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   

2.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

3.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

4.
The physics of solar forcing of the climate and long term climate change is summarized, and the role of energetic charged particles (including cosmic rays) on cloud formation and their effect on climate is examined. It is considered that the cosmic ray-cloud cover hypothesis is not supported by presently available data and further investigations (during Forbush decreases and at other times) should be analyzed to further examine the hypothesis. Another player in climate is lightning through the production of NOx; this greenhouse gas, water vapour in the troposphere (and stratosphere) and carbon dioxide influence the global temperature through different processes. The enhancement of aerosol concentrations and their distribution in the troposphere also affect the climate and may result in enhanced lightning activity. Finally, the roles of atmospheric conductivity on the electrical activity of thunderstorms and lightning discharges in relation to climate are discussed.  相似文献   

5.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

6.
Summary Although lightning flashes have been photographed which apparently have up to 40 or more component strokes, no flashes having more than 14 strokes have been observed on records of the eletrical fields of thunderstorms. The apparent discrepancy between the two methods of observation is explained by the fact that small momentary increases in the continuing current flowing to ground after some strokes, are easily mistaken for component strokes on photographs taken with slow cameras.After the cessation of a discharge, the ionization of the lightning channel decreases at such a rate that a subsequent discharge to earth will require a fresh leader if it follows within an interval longer than about 15 millisec; discharges following at shorter intervals are not preceded by leaders. The channel loses its ionization completely in about 100 millisec.In general, the larger the number of component strokes, the longer is the duration of the flash, but there is no definite relationship between the number of strokes and the duration.Flashes of exceptionally long duration always have one or more very long intervals between two successive strokes and during these intervals there appears to be very little electrical activity in the cloud; it is suggested that the main progress of the discharge in the cloud takes place during the shorter intervals, so that flashes of long duration do not necessarily drain very extensive regions of charge.I wish to thank the South African Council for Scientific and Industrial Research for a grant in aid of this research.  相似文献   

7.
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model.  相似文献   

8.
对观测资料的分析表明,甘肃地区和海南岛的地闪特征具有很大差异。海南岛负地闪(P型)首次回击前的电场变化波形与国外的报道类似,而甘肃地区仅有30%左右的负地闪属P型,约70%的负地闪首次回击前的电场变化波形具有明显的云闪特征(C型负地闪)。海南岛没有发现正地闪,甘肃地区有正地闪。该两地区存在两类电结构不同的雷暴,两类雷暴中地闪放电过程及特征的很大差异,说明我国的防雷规范及措施很可能需要考虑雷暴的地区差异性。  相似文献   

9.
The lightning-induced-damages in the mid-latitude regions are usually caused during severe thunder-storms. But the discharge parameters of natural lightning are difficult to be measured. Five lightning flashes have been artificially triggered with the rocket-wire technique during the passage of two severe thunderstorms. The discharge current and close electric field of return stroke in artificially triggered lightning have been obtained in microsecond time resolution by using current measuring systems and electric field change sensors. The results show that the five triggered lightning flashes include 1 to 10 return strokes, and the average return stroke current is 11.9 kA with a maximum of 21.0 kA and a mini-mum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The half peak width of the current waveform is 39 μs, which is much larger than the usual result. The peak current of stroke Ip (kA) and the neutralized charge Q(C) has a relationship of Ip = 18.5Q0.65. The radiation field of return stroke is 5.9 kV·m-1 and 0.39 kV·m-1 at 60 m and 550 m, respectively. The radiation field decreases as r -1.119 with increase of horizontal distance r from the discharge channel. Based on the well-accepted transmission line model, the speed of return stroke is estimated to be about 1.4×108 m·s-1, with a variation range of (1.1―1.6)×108 m·s-1. Because of the similarities of the triggered lightning and natural lightning, the results in this article can be used in the protection design of natural lightning.  相似文献   

10.
利用16年(1998-2013)的热带降水测量任务卫星(TRMM)降水雷达和闪电成像仪等多传感器观测资料,分析了亚洲季风区内雷暴和强雷暴的空间分布、季节变化及日变化等气候特征.文中取闪电数大于1的雷达降水特征为雷暴,并将闪电频数在前10%的雷暴定义为强雷暴.结果表明:雷暴活动主要集中在陆地及近海区域,陆地与海洋上的雷暴密度之比约为4.4:1,强雷暴密度之比约为7.4:1.0-10°N纬度带内雷暴数占总雷暴的比例最大(占总数的31.7%),而强雷暴则在20°N-30°N区间最为活跃(34.5%).雷暴与闪电密度的空间分布在低纬度区域(0-30°N)较为一致,但在中纬度地区(30°N-36°N)呈现出不同的分布特征,即从西部的青藏高原向东部的江淮流域,雷暴密度逐渐减少但闪电密度逐渐增加;而强雷暴与闪电密度的空间分布基本一致.受亚洲夏季风活动影响,低纬度地区强雷暴更容易发生在春季,强中心位于喜马拉雅山南麓东端,次中心位于中南半岛,而中纬度地区在夏季最为活跃,强中心和次中心则分别位于喜马拉雅山南麓西端和中国江淮流域.陆地上雷暴主要集中在午后至傍晚,少数区域受局地环流和气象条件的影响夜雷暴活动频繁,而海洋上雷暴更易发生在午夜至清晨.  相似文献   

11.
Mid-latitude Digisonde Doppler velocities, auroral electrojet (AE) indices and cloud-to-ground (CG) lightning strokes during August 2003–2004 were used to study the perturbations in the F-region vertical drift associated with terrestrial thunderstorms. A superposed epoch analysis (SEA) showed that the F-region vertical drifts Vz had a net descent of ~0.6 m s?1 peaking ~3 h after lightning. Stronger downward perturbations of up to ~0.9 m s?1 were observed in the afternoon on the day prior to lightning days. The perturbations were less significant on the day after and insignificant during the remaining intervals up to 144 h on either side of the lightning. The stronger responses on the day before are consistent with causality because the lightning times were merely proxies for the physical mechanisms involved. The actual causes are unclear, but we discuss the possible roles of lightning-induced ionisation enhancements, intense electric fields penetrating upward from electrified clouds, and atmospheric gravity waves (AGWs) radiated from thunderstorms or from the accompanying tropospheric fronts. There is no doubt that the behaviour of the mid-latitude F-region is controlled by the thermospheric winds and the solar wind-magnetosphere electrical generators, but our results suggest that electrified clouds also account for a significant, albeit relatively small component of the ionospheric variability.  相似文献   

12.
Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge (LPC) on different types of lightning. The results show: (1) The LPC plays a key role in generating negative cloud-to-ground (CG) flashes and inverted intra-cloud (IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning. (2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed. (3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning. (4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.  相似文献   

13.
Summary The nature and the role of gravity waves in the troposphere is briefly discussed and reviewed. After describing some basic properties of gravity waves and their generation mechanisms, we analyze their ability to influence phase changes, trigger and organize convective cells, to produce and interact with turbulence, and to affect diffusive processes in the atmosphere. Throughout, the emphasis is placed on the physical processes involved in the interaction of gravity waves with mesoscale and planetary boundary layer phenomena. Also discussed and reviewed are those remote sensing devices which are particularly useful in revealing and measuring such waves. Finally, an attempt is made to outline possible lines of future work for the purpose of fully understanding the role of gravity waves in mesoscale and microscale dynamics.  相似文献   

14.
In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.  相似文献   

15.
Lightning discharges monitored by the SAFIR network system in Poland have been additionally identified over the 100×100 km area near Warsaw by single-point independent recordings of electric field and Maxwell current rapid changes. The data collected in summer thunderstorm days of 2002 showed some untypical properties of the lightning discharges which are rarely observed. Especially remarkable was a number of ground multi-stroke flashes with the return strokes (RS) which transported to the earth charges of opposite signs. Bipolar flashes (BF) of this kind were mostly involved in the events in which the nearby intracloud (ic) and cloud-to-ground (c-g) discharges were very closely associated in time. Events of such a close collocation of two different types of lightning discharges, previously called the complex lightning discharge events (CLDE), were quite often observed during summer thunderstorms in Poland. The events of this kind, i.e. 8 flashes, identified by the SAFIR detection system as BF’s present the multiple stroke flashes of the mean horizontal separation distance between striking points of particular RS equal to (2.8 ± 2.1) km and of the mean time interval between strokes of (46.8 ± 74.4) ms. The time separation between the observed BF and the adjacent ic flashes was from 0.1 to 335 ms, and horizontal separation distance between them ranged from 1.8 to 14.5 km. The multiplicity of the recorded BF’s ranged from 2 to 4 strokes. Four of these BF’s followed the ic discharge, but the other three preceded the ic and one was alone with no close ic.  相似文献   

16.
Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200?years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather to the most electrically active.  相似文献   

17.
Sprites are newly discovered optical emissions in the mesosphere over large thunderstorms. This paper is the observational summary of winter sprites in the Hokuriku area of Japan and their parent lightning in the winter of 2004/2005, by using the coordinated optical and electromagnetic (VHF and ELF) measurements in Japan. As the results of optical observations at two stations, we have found that this campaign has yielded a variety of sprite shapes; V-angle shaped structures have been often observed (25%) in addition to columnar structures familiar for us. All of the sprite events are found to be associated with +CG lightning, as seen from the macroscopic information by ELF data at Moshiri. However, examining the microscopic properties of parent lightning as seen from the VHF SAFIR lightning detection network, has suggested very complicated characteristics of parent lightning discharges inducing sprites, as compared with the ELF data. One half of the sprite events are also found to be associated with +CG by the SAFIR observation, but another half has yielded rather new results as compared with earlier results. Four events are definitely associated with -CG and the remaining three events, inter-cloud flashes. The overall picture for Japanese winter sprites and their parent lightning discharges, is significantly different from that for the summer-time, continental sprites. This is indicative of complexity of winter lightning in the Hokuriku area of Japan and this would provide new information on the sprite generation mechanism.  相似文献   

18.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   

19.
Different approaches are used in estimating the global production of NOx by lightning flashes, including field measurements carried out during thunderstorm conditions, theoretical studies combining the physics and chemistry of the electrical discharges, and measurements of NOx yield in laboratory sparks with subsequent extrapolation to lightning. In the latter procedure, laboratory data are extrapolated to lightning using the energy as the scaling quantity. Further, in these studies only the return strokes are considered assuming that contributions from other processes such as leaders, continuing currents, M components, and K processes are negligible. In this paper, we argue that the use of energy as the scaling quantity and omission of all lightning processes other than return strokes are not justified. First, a theory which can be used to evaluate the NOx production by electrical discharges, if the current flowing in the discharge is known, is presented. The results obtained from theory are compared with the available experimental data and a reasonable agreement is found. Numerical experiments suggest that the NOx production efficiency of electrical discharges depends not only on the energy dissipated in the discharge, but also on the shape of current waveform. Thus, the current signature, can influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge processes. We show that the NOx production takes place mainly in slow discharge processes such as leaders, M components, and continuing currents, with return strokes contributing only a small fraction of the total NOx. The results also show that cloud flashes are as efficient as ground flashes in NOx generation. In estimating the global NOx production by lightning flashes the most influencing parameter is the length of the lightning discharge channel inside the cloud. For the total length of channels inside the cloud of a typical ground flash of about 45 km, we estimate that the global annual production of NOx is about 4 Tg(N).  相似文献   

20.
用宽带干涉仪观测云内闪电通道双向传输的特征   总被引:5,自引:6,他引:5       下载免费PDF全文
利用闪电宽带干涉仪系统对闪电的观测表明,地闪和云闪的云内闪电通道都存在双向发展的特征. 闪电在云中负电荷区域初始激发以后,在通道两端发生向不同方向同时发展的击穿过程. 这两种击穿过程均产生较强的辐射,且辐射频谱特征十分相似,表明云内闪电通道两端发生的击穿过程可能均为负击穿过程. 相应电场变化表明闪电通道双向发展期间伴随着负电荷的向上转移. 这一观测事实与Kasemir早期提出的闪电通道双向发展的概念有一定的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号