首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

2.
3.
The Monglo adakite contains mafic and ultramafic xenoliths, which probably originated from the mantle section of an Early Cretaceous supra-subduction zone ophiolitic complex located within the Luzon arc crust. Spinel-bearing dunites are dominant among this xenolith collection and display evidence for three episodes of subduction-related melt percolation. The first one is evidenced by an undeformed clinopyroxene characterized by convex-upwards REE pattern. This clinopyroxene crystallized from a calc-alkaline basaltic magma, likely formed in the Cretaceous supra-subduction setting of the ophiolite. Then, two metasomatic events, evidenced by orthopyroxene-rich and amphibole-rich secondary parageneses, respectively, affected most of the spinel dunites. The opx-rich paragenesis is related to the circulation within the dunitic upper mantle of hydrous slab-derived melts similar to those affecting the mantle peridotite xenoliths from Papua New Guinea and Kamchatka. Finally the amphibole-rich veins are related to the interaction between the studied dunite xenoliths and the host adakite or an adakitic melt similar to it.  相似文献   

4.
The Sr and Nd isotopic ratios of Central American volcanics can be described by the mixing of four components, marine sediment from DSDP Site 495, MORB-source mantle (DM), EMORB-source mantle (EM), and continental crust. Most of the isotopic data define a trend between EM and a modified mantle (MM) formed as a mixture of DM and less than 0.5% marine sediment, or fluid derived there from. The MM to EM trend is equally apparent in the incompatible-element data and is most clearly seen in a Ba/La versus La/Yb plot. A hyperbolic trend connects high Ba/La and low La/Yb at the MM end of the trend to low Ba/La and high La/Yb at the EM end. Smooth regional variations in incompatible-element and isotopic ratios correlate with the dip of the subducted slab beneath the volcanic front and the volume of lava erupted during the last 100,000 years (volcanic flux). Steep dip and low flux characterize the MM end-member and shallow dip and high flux characterize the EM end-member. The simplest model to explain the linked tectonic and geochemical data involves melting in the wedge by two distinct mechanisms, followed by mixing between the two magmas. In one case, EM magma is generated by decompression of EM plus DM asthenosphere, which is drawn in and up toward the wedge corner. EM mantle is preferentially melted to small degrees because of the presence of low melting components. The second melt is formed by release of fluid from the subducted slab beneath the volcanic front to form MM magma. Mixing between EM and MM magmas is controlled by subduction angle, which facilitates delivery of EM magma to the volcanic front at low-dip angles and impedes it at steep-dip angles.  相似文献   

5.
Major, trace element and Sr isotopic compositions have been determined on 21 lava samples from Vico volcano, Roman Province, Central Italy. The rocks investigated range from leucite tephritic phonolites to leucite phonolites and trachytes. Trace element compositions are characterized by high enrichments of incompatible elements which display strong variations in rocks with a similar degree of evolution. Well-defined linear trends are observed between pairs of incompatible trace elements such as Th-Ta, Th-La, Th-Hf. A decrease of Large Ion Lithophile (LIL) elements abundance contemporaneously with the formation of a large central caldera is one of the most prominent characteristics of trace element distribution. Sr isotope ratios range from 0.71147 to 0.71037 in the pre-caldera lavas and decreases to values of 0.70974–0.70910 in the lavas erupted after the caldera collapse. Theoretical modelling of geochemical and Sr isotopic variations indicates that, while fractional crystallization was an important evolutionary process, AFC and mixing also played key roles during the evolution of Vico volcano. AFC appears to have dominated during the early stages of the volcanic history when evolved trachytes with the highest Sr isotope ratios were erupted. Mixing processes are particularly evident in volcanites emplaced during the late stages of Vico evolution. According to the model proposed, the evolution of potassic magmas emplaced in a shallow-level reservoir was dominated by crystal fractionation plus wall rock assimilation and mixing with ascending fresh mafic magma. This process generated a range of geochemical and isotopic compositions in the mafic magmas which evolved by both AFC and simple crystal liquid fractionation, producing evolved trachytes and phonolites with variable trace element and Sr isotopic compositions.  相似文献   

6.
Mineralized quartz diorites of the Santo Tomas II porphyry copper-gold deposit, carry high Au contents (average: 1.8 ppm) as well as 160 ppb Pd and 38 ppb Pt. Values of other platinum-group elements (PGE) and rhenium are below the analytical detection limits. There is a significant positive correlation between Au and Cu. The highest Pd values were detected in the most Au- and Cu-rich rocks. Platinum-group minerals (PGM) occur exclusively as inclusions in chalcopyrite and bornite. Potential Pd and Pt contents in sulphide concentrates are estimated at 1.5 g/t and 0.4 g/t, respectively. The precious metal assemblages consist of merenskyite (main PGM), kotulskite, moncheite, native gold, electrum, hessite and petzite. Polyphase fluid inclusions in quartz veinlets, associated with a PGM-bearing bornite-chalcopyrite-magnetite assemblage, are characterized by high salinity (35 to > 60 eq. wt% NaCl) and high trapping temperatures (between 380 and 520 °C). They may represent primary magmatic-hydrothermal fluids, which have been responsible for the transport of Pd, Pt and Au as chloride complexes.  相似文献   

7.
鱼卡金红石矿床是青海省境内发现的第一个超大型榴辉岩型金红石矿床。笔者在总结前人基础资料及详细野外地质矿产调查的基础上,通过榴辉岩岩石学及金红石矿物学研究,利用LA-ICP-MS法对该矿床中的金红石进行原位微量元素分析等。结果表明:金红石赋存状态主要有五种,即包裹结构、粒间结构、串珠状结构、退变残余结构、丝缕状出溶结构,其中以粒间和串珠状赋存状态产出时,含矿性最好。同时,变质阶段的差异、流体活动的强弱将影响金红石的赋存状态。流体活动越弱时,野外表现为榴辉岩的新鲜程度越高、且少或不发育长英质脉体、矿物越自形,则越有利于形成粒间和串珠状金红石富矿;折返过程中流体或熔体作用过强、野外表现为广泛发育长英质脉体、榴辉岩中矿物呈他形产出时,则金红石已经退变为钛铁矿和榍石。总结前人的地球化学和年龄数据表明:富集地幔源区、演化程度高、陆壳混染程度低的富钛基性原岩是鱼卡榴辉岩型金红石矿床主要物质来源,高压(超高压)变质作用促进了钛的进一步富集成矿,成矿年代集中在440~430Ma。金红石锆温度计显示的成矿温度主要在570~671℃之间,金红石中高场强元素Ti、Nb、Ta、Zr、Hf等富集,表明其可能形成于俯冲带环境。这些成因认识等将为柴北缘成矿带榴辉岩型金红石矿床的进一步找矿工作部署、勘查评价及突破提供了重要的理论支撑与借鉴。  相似文献   

8.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

9.
A wide range of trace elements have been analysed in mantle xenoliths (whole rocks, clinopyroxene and amphibole separates) from alkaline lavas in the Eastern Carpathians (Romania), in order to understand the process of metasomatism in the subcontinental mantle of the Carpatho-Pannonian region. The xenoliths include spinel lherzolites, harzburgites and websterites, clinopyroxenites, amphibole veins and amphibole clinopyroxenites. Textures vary from porphyroclastic to granoblastic, or equigranular. Grain size increases with increasing equilibrium temperature of mineralogical assemblages and results from grain boundary migration. In peridotites, interstitial clinopyroxenes (cpx) and amphiboles resulted from impregnation and metasomatism of harzburgites or cpx-poor lherzolites by small quantities of a melt I with a melilitite composition. Clinopyroxenites, amphibole veins and amphibole clinopyroxenites are also formed by metasomatism as a result of percolation through fracture systems of large quantities of a melt II with a melanephelinite composition. These metasomatic events are marked by whole-rock enrichments, relative to the primitive mantle (PM), in Rb, Th and U associated in some granoblastic lherzolites and in clinopyroxene and amphibole veins with enrichments in LREE, Ta and Nb. Correlations between major element whole-rock contents in peridotites demonstrate that the formation of interstitial amphibole and clinopyroxene induced only a slight but variable increase of the Ca/Al ratio without apparent modifications of the initial mantle composition. Metasomatism is also traced by enrichments in the most incompatible elements and the LREE. The Ta, Nb, MREE and HREE contents remained unchanged and confirm the depleted state of the initial but heterogeneous mantle. Major and trace element signature of clinopyroxene suggests that amphibole clinopyroxenites and some granoblastic lherzolites have been metasomatized successively by melts I and II. Both melts I and II were Ca-rich and Si-poor, somewhat alkaline (Na > K). Melt I differed from melt II in having higher Mg and Cr contents offset by lower Ti, Al, Fe and K contents. Both were highly enriched in all incompatible trace elements relative to primitive mantle, showing positive anomalies in Rb, Ba, Th, Sr and Zr. They contrasted by their Ta, Nb and LREE contents, lower in melt I than in melt II. Melts I and II originate during a two-stage melting event from the same source at high pressure and under increasing temperature. The source assemblage could be that of a metasomatized carbonated mantle but was more likely that of an eclogite of crustal affinity. Genetic relationships between calc-alkaline and alkaline lavas from Eastern Carpathians and these melts are thought to be only indirect, the former originating from partial melting of mantle sources respectively metasomatized by the melts I and II. Received: 17 March 1997 / Accepted: 14 July 1997  相似文献   

10.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

11.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

12.
Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.  相似文献   

13.
Recognition of neotectonic features along the Marikina Valley fault system (MVFS) in central Luzon, Philippines indicates a dominantly dextral strike-slip motion during its most recent activity believed to be Late Pleistocene to Holocene in age. Variations in the ratios of vertical to horizontal displacements for the segments imply a dominantly dextral motion of the West Marikina Valley fault (WMVF) and oblique dextral motion for the East Marikina Valley fault (EMVF). The displacement data further suggest that rupturing along the EMVF involved multiple segments and occurred separately from the events along the WMVF segments. Estimated earthquake magnitudes for the WMVF and EMVF based on single-event offsets fall within the range M 7.3–7.7. The vertical slip component in the northern part of the Marikina Valley is associated with the development of a basin between the EMVF and WMVF while the large vertical component in the southernmost segment of the EMVF (Talim) is attributed to volcanism-related extension. Lateral advection of the block bounded by the MVFS and the Philippine fault zone (PFZ), rather than pure shear resulting from an assumed east–west compression, best explains the observed kinematics of the MVFS. This is the result of compression during the westward drift of the Philippine Sea Plate and northern Luzon and occurs through slip along the WMVF and EMVF at rates of 5–7 mm/yr.  相似文献   

14.
Baguio, in the Central Cordillera of Northern Luzon, is a district that displays porphyry copper and epithermal gold mineralization, associated with Early Miocene–Pliocene–Quaternary calc‐alkaline and adakitic intrusions. Systematic sampling, K‐Ar dating, major and trace elements, and Sr, Nd, Pb isotopic analyses of fresh magmatic rocks indicate three magmatic pulses: an Early Miocene phase (21.2–18.7 Ma), a Middle–Late Miocene phase (15.3–8 Ma) and finally a Pliocene–Quaternary event (3–1 Ma). The first phase emplaced evolved calc‐alkaline magmas, essentially within the Agno Batholith complex, and is thought to be related to the westward‐dipping subduction of the West Philippine Basin. After a quiescence period during which the Kennon limestone was deposited, magmatic activity resumed at 15.3 Ma, in connection with the start of the subduction of the South China Sea along the Manila Trench. It emplaced first petrogenetically related and relatively unradiogenic low‐K calc‐alkaline lavas and intermediate adakites. Temporal geochemical patterns observed from 15.3 to 1 Ma include progressive enrichment in K and other large ion lithophile elements, increase in radiogenic Sr and Pb and corresponding decrease in radiogenic Nd. These features are thought to reflect the progressive addition to the Luzon arc mantle wedge of incompatible elements largely inherited from South China Sea sediments. The origin of the long quiescence period, from 8 to 3 Ma, remains problematic. It might represent a local consequence of the docking of the Zambales ophiolitic terrane to Northern Luzon. Then, magmatic activity resumed at 3 Ma, emplacing chemically diversified rocks ranging from low K to high K and including a large proportion of adakites, especially during the Quaternary (dacitic plugs). The authors tentatively relate this diversity to the development of a slab tear linked with the subduction of the fossil South China Sea ridge beneath the Baguio area.  相似文献   

15.
南菲律宾地区类埃达克岩和富铌玄武质熔岩的成因   总被引:7,自引:3,他引:7  
埃达克岩(adakite)最初 是指由消减板片玄武岩物质熔融形成的富硅、富钠、高Sr/Y和La/Yb比值的弧火山熔岩。它通常产在会聚带,这个部位的年轻的、因而仍然是热的大洋板片正在发生俯冲消减。富铌的岛弦玄武央进则是吕等到高碱的镁铁质熔岩,它们相对于正常的岛弦玄武岩含有较多的高场强元素(HFSE)。这些玄武岩通常与埃达克央共生, 这一组合是直被用于论证他们的高HFSE含量是因为他们的地幔源区受到板片来源的熔体的交代。先前的区域研究结果表明,南菲律宾是埃达克岩和富铌岛孤玄武岩的一个典型产地。然而最近的详细研究显示,尽管该地区的一些岛弧火山岩是类埃达克岩的,但是它们很可能是来自地幔楔的母岩浆的分异作用的产物,而这里的地幔楔主要是受沉积来源的成分交代的,此外,菲律宾南部最典型的富铌熔岩中HFSE的富集,也很有可能是起因于似乎是西太平洋边缘特有的富集地幔组分的熔融。这些结果提出了如下问题:南菲律宾是否存在真正的板片来源的熔体?这里的富铌岛弧 熔岩是否起因于地幔楔被这种熔体交代?  相似文献   

16.
Potassium-rich calc-alkaline lavas of Lewotolo volcano, situated in the East Sunda Arc, Indonesia, contain the rare mineral zirconolite (CaZrTi2O7). Samples in which tiny grains of this mineral (3–25 μm in size) were found span the entire range of lava compositions (47–62 wt% SiO2). To the best of our knowledge, this is the first record of primary zirconolite in juvenile arc volcanics. The mineral forms part of a vesicle-filling assemblage consisting of a network of quenched feldspar crystals and an SiO2 phase, probably cristobalite. High contents of Th, U and REE (up to 9.3, 4.3 and 15.6 wt% oxide respectively) and very high Fe contents (up to 13.5 wt% Fe2O3) distinguish these zirconolites from those of other rock types. The extraction of volatile-rich phases with changing compositions in successive stages is considered to be responsible for the zirconolite formation. We hypothesise that a fluid capable of transporting HFSE, REE, Th and U was extracted from the magma and (partly) crystallised within voids which had formed earlier upon saturation of an aqueous fluid. Assuming that zirconolite compositions largely reflect trace metal contents of the coexisting fluid phase, significant amounts of `immobile' elements must have been transported on a macroscopic scale. Our findings thus point to a late-stage transfer of HFSE, REE, Th and U between different domains in a cooling magma body. Such a volatile-induced redistribution of trace elements at shallow levels of high-K volcanic systems may be significant for conventional geochemical modelling of magma evolution and for Th–U disequilibrium studies. Received: 3 November 1999 / Accepted: 29 February 2000  相似文献   

17.
We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and “showings” within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between ?1.9 and +2.5?‰, and Δ33SV-CDT values of between ?0.59 and ?0.03?‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0?‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.  相似文献   

18.
Geochemical and petrographic data suggest early submarine cementation of hardgrounds from the Lincolnshire Limestone Formation, Middle Jurassic, England. The three hardgrounds, from Cowthick, Castle Bytham and Leadenham quarries, developed in tidal-inlet, on-barrier and lagoonal sub-environments of a carbonate barrier-island complex. At Cowthick early composite (acicular-bladed) radial-fibrous cements, which pre-date aragonite dissolution, completely fill intergranular pore-space at the hardground surface; away from it isopachous fringing cements decrease in thickness. Microprobe analyses demonstrate zoning within the fringes with magnesium concentrations (> 2 wt % MgCO3) higher than those in allochems or later, ferroan cement (?0.5 wt % MgCO3, 1.7 wt % FeCO3). At Castle Bytham early granular isopachous cements, which post-date aragonite dissolution, occur within 5 cm of the surface. At Leadenham early lithification is superficial and represented by ferruginous crusts and micritic internal sediment. Late blocky cement fills residual pore-space in all three examples. Carbon and oxygen isotopic composition of whole-rock samples taken at intervals away from each hardground surface demonstrate the increasing proportion of late 18O depleted cements (δ18O – 8 to – 10). Early cements must have a marine isotopic composition; different δ18O values from each hardground reflect the intensity of early lithification and exclusion of late cements at the hardened surface. There is no isotopic evidence for subaerial cement precipitation during possible emergence at Castle Bytham. Oyster samples (with δ18O, – 2.9 and δ13C, 2.4) give estimated palaeotemperatures of 22–25°C. Early cements from Cowthick are enriched in 18O and 13C (δ18O = 0 δ13C ? 3‰) compared to the oyster values. In conjunction with trace element data this is interpreted as evidence for high-magnesium calcite precursor cements which underwent replacement in a system with a low water: rock ratio. The intensity of early lithification is related to depositional environment: maximum circulation of sea-water producing the most lithified hardground (Cowthick). This is directly analogous to the formation of Recent hardgrounds.  相似文献   

19.
西秦岭温泉混浆花岗岩的微量与稀土元素地球化学特征   总被引:1,自引:1,他引:1  
西秦岭温泉岩体是壳、幔岩浆混浆的产物。寄主岩石高Mo、Sn、Bi、W等高温热液成矿元素及Co、Ni、Cr等亲铁元素,而基性端元的暗色微细粒镁铁质包体及基性岩墙则异常富集轻稀土和Ba、Rb、Sr、Zr、Th、Hf、Nb等大离子亲石元素,贫Co、Ni、Cr等亲铁元素。微量元素的反常分布,指示了两个端元元素演化的显著依从性和交换性。LREE/HREE值在寄主岩石中为10~15,受岩浆混合作用影响在基性端元为9.98~13.5,异常富轻稀土。δEu值及(La/Sm)N、(Gd/Yb)N、(La/Yb)N等比值,显示该岩体为混浆花岗岩。岩浆混合作用强烈的混浆暗色花岗岩具有显著的壳幔过渡性质。  相似文献   

20.
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号