首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to illustrate how a model grafting between C60 and poly (vinyl pyrrolidone) PVP of small flocculates results in maximum optical absorption and rheology in a nanofluid in correlation to microstructure while C60-content was varied in an ideal optical host of 40.0 g/L PVP in water. Broad absorption band observed in the 250–450 nm region in the π → π* C(sp2) electron transition in PVP-grafted C60 of small assemblies indicate a cross-linking between the PVP and C60 molecules in a complex structure. Above a threshold value of 11.2 μM C60, a deviation from a linear Beer-Lambert law could arise from a solubilization capacity limit of PVP to solubilize C60 molecules in a charge transfer (CT) C60:PVP complex. A nearly 4 times enhancement in the shear viscosity (η) of PVP solution by raising the C60-content by a factor ~15 explicitly divulges that insertion of C60 helps in expanding the anchoring between two moieties in a C60:PVP CT complex. As the imposition of shear force breaks the soft C60:PVP complex into small nanostructures, the η-value relaxes slowly to the base value on increasing the shear rate from 10 to 100 s?1. Synthesis of C60:PVP nanofluid exhibiting such characteristics are useful for drug delivery, lubrication, antibacterial activity, and many biological applications.  相似文献   

2.
Ultrafine fibers of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) (CS/PVA/PVP) were prepared via electrospinning. The structure and morphology of CS/PVA/PVP ultrafine fibers was characterized by the Fourier transform infrared (FT-IR) spectroscope and scanning electron microscope (SEM). Furthermore, the effects of the concentration of PVA, PVP and the electrospinning voltage on the morphology of ultrafine fibers were investigated the the SEM. When the concentration of PVA was at the range of 30wt%–40wt%, ultrafine fibers could be obtained. The diameter distributions of ultrafine fibers decreased when the electrospinning voltage increased from 20 to 30 kV. The rough surface fibers could be obtained after etching with CHCl3.  相似文献   

3.
In this paper, poly (vinyl pyrrolidone) (PVP) doped multiwall carbon nanotubes (MWCNTs/polyrhodanine), were synthesized through one-step chemical oxidative polymerization of rhodanine monomers on the surface-modified carbon nanotubes. Characterization of MWCNTs/polyrhodanine was conducted by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and EDX spectrum analyses in which the results confirmed the successful formation of MWCNTs/polyrhodanine. In addition, to investigate the thermal properties of samples, thermogravimetric analysis (TGA) was employed, and results exhibited significant improvement in the nanocomposite thermal stability due to the addition of MWCNTs with reinforcement effect in polymer matrix.  相似文献   

4.
We have investigated the structural and optical properties of P3OT and P3OT/fullerene thin films in view of their application as active layer in plastic solar cells. Films of these materials were prepared by spin coating from toluene solutions onto silicon substrates. Their optical properties were studied by spectroscopic ellipsometry, which provides the anisotropic dielectric function of the films. Moreover, structural properties were studied using X-ray diffraction. A close correlation between the results obtained by both methods could be found. Especially, the strong optical anisotropy of the films can be explained in terms of a preferable orientation of the polymer chains parallel to the substrate. The effect of the optical anisotropy on the performance of optoelectronic devices is discussed.  相似文献   

5.
6.
Over the past years, ultrathin films consisting of electron donating and accepting molecules have attracted increasing attention due to their potential usage in optoelectronic devices. Key parameters for understanding and tuning their performance are intermolecular and molecule–substrate interactions. Here, the formation of a monolayer thick blend of triphenylene‐based organic donor and acceptor molecules from 2,3,6,7,10,11‐hexamethoxytriphenylene (HAT) and 1,4,5,8,9,12‐hexaazatriphenylenehexacarbonitrile (HATCN), respectively, on a silver (111) surface is reported. Scanning tunneling microscopy and spectroscopy, valence and core level photoelectron spectroscopy, as well as low‐energy electron diffraction measurements are used, complemented by density functional theory calculations, to investigate both the electronic and structural properties of the homomolecular as well as the intermixed layers. The donor molecules are weakly interacting with the Ag(111) surface, while the acceptor molecules show a strong interaction with the substrate leading to charge transfer and substantial buckling of the top silver layer and of the adsorbates. Upon mixing acceptor and donor molecules, strong hybridization occurs between the two different molecules leading to the emergence of a common unoccupied molecular orbital located at both the donor and acceptor molecules. The donor acceptor blend studied here is, therefore, a compelling candidate for organic electronics based on self‐assembled charge‐transfer complexes.  相似文献   

7.
为了研究氧化石墨烯(GO)对聚合物基复合材料力学性能的影响,通过溶液混合法制备了GO/聚乙烯醇(PVA)复合材料。然后,采用XRD、TEM、FTIR、DSC和纳米压痕实验等研究了GO/PVA复合材料的结构、界面结合性能、力学性能、蠕变行为和吸水膨胀率。结果表明:GO可以均匀分散在PVA基体中,二者之间主要通过氢键作用结合,具有较高的界面结合力;与纯PVA相比,1wt% GO/PVA复合材料的硬度和有效弹性模量分别提高了28.9%和23.3%,压入蠕变深度下降了19.8%;GO/PVA复合材料具有较低的无限剪切模量与瞬时剪切模量比,表明GO提高了PVA的蠕变抗力;GO的添加同时增加了GO/PVA复合材料的阻水性并降低了膨胀系数。吸湿纳米压痕实验结果表明:纯PVA的力学性能会随吸湿时间延长而下降,而GO/PVA复合材料吸湿72h后的力学性能基本保持不变。所得结论为石墨烯增强聚合物基复合材料的研究提供了理论指导。   相似文献   

8.
Polyaniline (PANI) dispersion in water has been prepared by using industrially produced and cheaper stabilizer, namely gum acacia — dried exudates from a species of acacia tree. Gum acacia stabilized PANI particles can be easily isolated from the aniline polymerization reaction mixture and then re-dispersed in water. By increasing the content of gum acacia — in the polyaniline-gum acacia (PANI-ACACIA) redispersable composite from 42 to 70 wt.% it is possible to diminish the average particle diameter from 450 nm to 200 nm and lower its size distribution. The suitability of the dispersion for blending with water-soluble polymers, such as for example poly(vinyl alcohol) (PVA) has also been tested. The composite PANI-ACACIA containing 60 wt.% of gum acacia has yielded the best blends with PVA with the conductivity in the range of 10− 4 to 10− 5 S/cm.  相似文献   

9.
以ZnO和NaOH为原料,采用低温水热法合成纳米ZnO 半导体材料,并与聚乙烯醇(PVA)水溶液在超声作用下混合,通过直接煅烧制备出PVA中含共轭双键碳链结构(C)的ZnO/PVAC复合光催化材料。采用 SEM、XRD、FTIR、Raman和UV-Vis DRS对样品进行表征。结果表明:ZnO/PVAC复合光催化材料由结晶性能良好的纳米ZnO和具有共轭结构的聚合物组成,且界面间通过化学键Zn-O-C相连接;在模拟太阳光照射下,ZnO/PVAC复合光催化材料对光的吸收响应可扩展到整个可见光区,并产生较高光电流。光催化性能测试结果表明,ZnO/PVAC复合光催化材料对罗丹明B的降解催化性能(30 min降解率接近于100%)明显高于纯纳米ZnO。   相似文献   

10.
Polymer electrolyte films of PVP + x wt% ionic liquid (IL) (1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4]) for x = 0, 5, 10, 15, 20, 25 wt% have been prepared using solution cast technique. These films were characterized by TGA, DSC, FT-IR and ac impedance spectroscopy techniques. From XRD studies it is found that the inclusion of IL increases the amorphocity of polymeric membranes. DSC thermograms show that the glass transition (Tg) and melting temperatures (Tm) of PVP shift upon complexation with IL. FT-IR analysis shows the complexation of PVP with IL. Thermogravimetric studies show that PVP decomposes in a single step while PVP/IL membranes exhibit two step decomposition; lower value of decomposition temperature corresponds to the decomposition of PVP/IL complex while the higher decomposition temperature has been attributed to the decomposition of PVP. The decomposition temperature of PVP/IL complex decreases with the increasing amount of IL in the PVP membrane. Temperature dependence of conductivity and dielectric relaxation frequencies have also been studied for PVP and PVP/IL membranes. Both show thermally activated Arrhenius behaviour.  相似文献   

11.
We investigated the influence of thermal annealing on the structural and optical properties of two variations of organic nanocomposite materials; 1) poly [3-hexylthiophene] and [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM), and 2) poly [3-hexylthiophene] and [6,6]-phenyl C71 butyric acid methyl ester) (P3HT:PC71BM). The evolution of surface roughness and morphology was investigated using atomic force microscopy while device electrical properties were investigated by measuring current-voltage (I-V) characteristics. Upon thermal treatment, results show that P3HT:PC71BM nanocomposites produce a more homogeneous mixture of finer grain size than P3HT:PC61BM. Furthermore, stronger optical absorption in the visible region is observed in P3HT:PC71BM compared to P3HT:PC61BM. Since optical absorption is closely related to film crystallinity, it is inferred that P3HT:PC71BM composites undergo more extensive crystallization upon annealing. Photoluminescence spectra of both P3HT:PC61BM and P3HT:PC71BM nanocomposites (dissolved in chlorobenzene) show that each has excellent quenching effects. I-V characteristic curves show that P3HT:PC71BM registers higher current density under AM 1.5 illumination than does P3HT:PC61BM. For the devices described in this paper having active areas of approximately 12 mm2, efficiency is approximately 33% better for C71-based solar cells than that observed for devices made using C61 fullerene.  相似文献   

12.
利用低频振荡、 冻融法制得果胶/聚乙烯醇复合 (Co PP) 水凝胶 , 采用红外光谱仪、 差示扫描量热仪、X射线衍射仪、 扫描电镜 , 表征其结构; 观察 Co PP水凝胶的溶胀性能 , 并探讨扩散模式及溶胀动力学。结果表明: Co PP水凝胶是一种多孔材料、 有两个结晶区 , 脱水后可再次水合、 溶胀 ; 水分子以菲克扩散模式渗入 Co PP水凝胶 , Co PP水凝胶的溶胀速率常数、 溶胀平衡时的质量溶胀率 (197. 38 %~252. 49 %) 、 体积溶胀率 (241.47 %~308. 93 %) , 均大于聚乙烯醇 ( PVA) 水凝胶。因此 , Co PP水凝胶具有溶胀快和溶胀率大等特点 , 可减小人工髓核假体植入时的尺寸 , 利于微创手术植入。  相似文献   

13.
In this research, sodium-montmorillonite (Na-MMT) at four different concentrations (0.5%, 1.0%, 2.0% and 4.0%) and didecyl dimethyl ammonium chloride (DDAC) were used to modify wood flour (WF) in a two-step process to form organo-montmorillonite (OMMT) inside the WF. Then the WFs with three sizes were mixed with poly(lactic acid) (PLA) to produce WF/PLA composites. The treated WF was characterized and some physical and mechanical properties of the composites were tested. The results showed that: (1) Na-MMT was successfully transformed to OMMT and uniformly distributed inside WF; (2) at 0.5% MMT concentration, water repellency, flexural and tensile properties of the composites were improved significantly. However, after introducing more OMMT, the enhancements diminished because of poor interfacial adhesion caused by OMMT agglomeration; (3) the composites with the maximum size of WF showed the most significant improvements among all, suggesting bigger WF was more suitable for this modification process.  相似文献   

14.
Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m2). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m2; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix.  相似文献   

15.
Measurements on YBCO/(Y-Pr)BCO trilayers show that the depression of the transition temperature in ultrathin YBCO is accompanied by a decrease in the conductance of the layers adjacent to the interfaces. The lowering of the conductance seems to be primarily the result of charge transfer across the interfaces, and perhaps to some extent also of defects. The intrinsic properties of YBCO seem to change little or not at all as the thickness decreases from bulk down to that of a single unit cell.  相似文献   

16.
采用浸涂法和热压烧结法制备了(SiCP/Cu)-铜箔叠层复合材料,研究了SiCP含量对材料组织结构、拉伸性能和断裂韧性的影响。结果表明,制备的(SiCP/Cu)-铜箔叠层复合材料层间厚度均匀,界面结合力良好,增强颗粒SiC能够弥散分布于黏结相中和界面处。随着SiCP体积分数的增加,(SiCP/Cu)-铜箔叠层复合材料的抗拉强度和屈服强度都先增加后降低,当SiCP的体积分数为20vol%(总体积为100)时,其抗拉强度和屈服强度达到最大值,分别为226.5 MPa和113.1 MPa,断裂方式主要为韧性断裂和部分脆性解理断裂。裂纹扩展方向平行于层界面时,材料的断裂韧性随SiCP体积分数的增加略有减小,SiCP体积分数为15%时达到最大值16.96 MPa·m1/2;裂纹扩展方向垂直于层界面时,(SiCP/Cu)-铜箔叠层复合材料的断裂韧性随SiCP体积分数的增加逐渐减小,SiCP体积分数为15%时达到最大值12.51 MPa·m1/2。  相似文献   

17.
Graphene was noncovalently functionalized with poly(sodium 4-styrenesulfonate) (PSS) and then successfully incorporated into the epoxy resin via in situ polymerization to form functional and structural nanocomposites. The morphology and structure of PSS modified graphene (PSS-g) were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The effects of PSS-g additions on tensile, electrical and thermal properties of the epoxy/graphene nanocomposites were studied. Noncovalent functionalization improved interfacial bonding between the epoxy matrix and graphene, leading to enhanced tensile strength and modulus of resultant nanocomposites. The PSS-g additions also enhanced electrical properties of the epoxy/PSS-g nanocomposites, resulting in a lower percolation threshold of 1.2 wt%. Thermogravimetric and differential scanning calorimetric results showed the occurrence of a two-step decomposition process for the epoxy/PSS-g nanocomposites.  相似文献   

18.
A sandwiched type of electrogalvanized (EG) steel sheets bonded with poly(vinyl butyral) (PVB) was used to study the effect of chromate conversion coating on the interfacial bonding and bending formability of the laminate. It was found that a proper chromium passivation on the steel surface enhanced both initial tensile shearing strength (TSS) and the joint durability in the corrosive environment. The greatest TSS, i.e. 17.8 MPa, was measured for the chromated steel sheet with chromium content ranging 0.040–0.055 g/m2. A good correlation between the TSS and the bending formability of the laminate was obtained. Poly(acrylic acid) (PAA) was also added in the chromate solutions and the complex conversion coating exhibited an improvement on the shearing properties of the EG steel sandwiches. The effect of PAA incorporated in the chromate coating on adhesion was dependent upon its concentration and molecular weight. The greatest TSS, i.e. 24.0 MPa, was measured by adding a proper amount of PAA with MW = 380,000 g/mol, approximately 8 wt%, in the chromate solution for EG surface coating. The possible mechanism of the enhancement of interfacial properties due to the incorporation of PAA will be discussed.  相似文献   

19.
Tianbin Wu 《Thin solid films》2007,515(13):5220-5226
Poly (ethylene terephthalate) (PET)-silica (SiO2)/polystyrene (PS) nanocomposite films were prepared by melting PET with the core-shell SiO2/PS nanoparticles. Differential scanning calorimetry (DSC) results showed that the crystallization temperature of PET-SiO2/PS nanocomposite films with 2 wt.% PS-encapsulated SiO2 nanoparticles reached 205.1 °C, 11.6 °C higher than that of PET. For crystallized PET-SiO2/PS nanocomposite films, double melting peaks appeared in DSC curves similar to PET. Scanning electron microscopy revealed a netlike fibre morphology for the amorphous PET-SiO2/PS nanocomposite films with 2 wt.% PS-encapsulated SiO2 nanoparticles. The light transmittance of these amorphous PET-SiO2/PS nanocomposite films reached 87.9%, compared to 84.2% for PET. With the increase of annealing temperature from 110 to 150 °C, the transmittance of PET-SiO2/PS nanocomposite films decreased slowly from 69.9 to 46.9%, while their haziness increased slightly from 45.8 to 48.2%. All these phenomena are suggested to result from the strongly heterogeneous nucleation of PS-encapsulated SiO2 nanoparticles in PET.  相似文献   

20.
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation (NIPS) technique as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15%, except for the membranes immediately immersed in ethanol, which is of about 23%. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100%, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号