首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
于桐  吴超  季鹏  徐杰  赵颖  郝艳娜  赵文明  王铁良 《中草药》2015,46(18):2720-2726
目的制备黄芩素固体脂质纳米粒并冻干,考察其理化性质及体外释药特性。方法采用乳化蒸发-低温固化法,以包封率为考察指标,正交试验优化其处方并考察其粒径、形态、电位、多分散系数(PDI)及体外溶出。以外观、色泽、再分散性为考察指标筛选最佳冻干保护剂,利用差示扫描量热(DSC)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)分析药物在纳米粒中的存在状态。结果黄芩素固体脂质纳米粒外观呈球状体,分布均匀,平均粒径为(82.64±6.78)nm,PDI为0.242±0.013,Zeta电位为(-25.7±0.5)m V,包封率为(81.3±1.2)%,载药量为(7.16±0.14)%(n=3),以5%甘露醇作冻干保护剂效果较好,药物以无定形状态分散在脂质载体中,体外溶出实验表明黄芩素固体脂质纳米粒与原料药相比具有明显的缓释作用。结论乳化蒸发-低温固化法制得的黄芩素固体脂质纳米粒,粒径小,包封率高,稳定性好,工艺简单。  相似文献   

2.
 目的 制备索拉非尼固体脂质纳米粒,并考察其理化性质及体外释药特性。方法 采用乳化蒸发-低温固化法制备索拉非尼固体脂质纳米粒,透射电镜观察形态,激光粒度仪测定粒径和Zeta电位,葡聚糖凝胶法和HPLC测定其包封率,透析法考察其体外释药特性,冷冻干燥法制备索拉非尼固体脂质纳米粒冻干粉,差示扫描量热分析其物相状态。结果 制得索拉非尼固体脂质纳米粒为类球形实体,粒径分布比较均匀,平均粒径为(108.2±7.0) nm,多分散指数为(0.250±0.022),Zeta电位为(-16.4±0.7) mV;测得3批样品的平均包封率为(73.49±1.87)%;体外释放符合Weibull模型;等体积15%甘露醇作冻干保护剂效果较好;DSC分析证明纳米粒已形成。结论 乳化蒸发-低温固化法适用于索拉非尼固体脂质纳米粒的制备,所制纳米粒各项物理指标稳定,具有明显缓释作用。  相似文献   

3.
目的制备白杨素固体脂质纳米粒,并评价其药动学行为。方法乳化超声-低温固化法制备纳米粒,测定其粒径、Zeta电位、体外释放度。12只SD大鼠随机分为2组,分别灌胃给予原料药、纳米粒混悬液。HPLC法测定血浆中白杨素含有量,绘制血药浓度-时间曲线,计算药动学参数。结果所得纳米粒平均粒径为(207.15±30.59)nm,PDI为0.224±0.067,Zeta电位为(-34.8±5.9)m V,36 h内累积释放度达84.36%。其Cmax、AUC0~t分别为(9.04±1.52)μg/m L、(33.67±3.47)μg·h/m L,明显高于原料药(P0.01)。结论固体脂质纳米粒可促进白杨素的口服吸收和生物利用度,并具有显著缓释特征。  相似文献   

4.
[目的]研究麦角甾苷眼用固体脂质纳米粒的制备方法及其体外释放的情况。[方法]采用乳化蒸发-低温固化法制备麦角甾苷固体脂质纳米粒,超滤离心法测其包封率,并对其粒径、电位、进行进一步考察,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中麦角甾苷的体外释放行为。[结果]麦角甾苷固体脂质纳米粒的平均粒径为85.56 nm,Zeta电位约为-20.97 m V,药物平均包封率为88.31%,DSC表明其理化性质稳定可靠,体外12 h累计释放率62.46%。[结论]制备的麦角甾苷固体脂质纳米粒包封率较高,粒径小且分布均匀,有良好的缓释作用。  相似文献   

5.
《中药材》2019,(3)
目的:制备隐丹参酮固体脂质纳米粒,比较大鼠灌胃给药后生物利用度提高情况。方法:薄膜超声法制备隐丹参酮固体脂质纳米粒,考察固体脂质纳米粒的粒径、Zeta电位和体外释放模型。将SD大鼠随机分为原料药组和隐丹参酮固体脂质纳米粒组,测定隐丹参酮的血药浓度,计算主要药动学参数。结果:隐丹参酮固体脂质纳米粒外观呈浅橙色乳光,平均粒径为(213.55±9.67)nm,Zeta电位为(-34.2±3.4)mV,包封率为(81.18±1.62)%,载药量为(5.25±0.67)%。隐丹参酮固体脂质纳米粒体外释药具有明显的缓释特征,释药模型符合Weibull模型:LnLn(1/1-M_t/M_∞)=0.8238Lnt-2.1241(r=0.9872)。药动学结果显示,隐丹参酮原料药的AUC_(0~t)为(622.59±107.04)μg/L·h,隐丹参酮固体脂质纳米粒AUC_(0~t)为(1 143.72±163.08)μg/L·h,相对生物利用度提高至1.84倍。结论:固体脂质纳米粒可有效促进隐丹参酮口服吸收,提高其口服吸收生物利用度。  相似文献   

6.
《中成药》2014,(9)
目的通过优化固体脂质纳米粒处方,制备川陈皮素固体脂质纳米粒。方法采用热熔乳化超声-低温固化法制备固体脂质纳米粒,以山嵛酸甘油酯质量浓度、磷脂质量浓度和药脂比为考察对象,以包封率和粒径为评价指标,利用三因素三水平中心复合设计-效应面法优化处方;采用Malvern粒度仪测定纳米粒的粒径分布和Zeta电位,透射电镜考察其形态;并考察纳米粒的体外释药行为。结果川陈皮素固体脂质纳米粒的包封率为(91.8±2.7)%,粒径为(189.6±23.4)nm,Zeta电位为-31.8 mV,透射电镜显示微乳粒径均一,成球状分布,48 h累积释放为55%。结论固体脂质纳米粒能改善川陈皮素水难溶性,有望提高其在体内的生物利用度。  相似文献   

7.
珍珠梅黄酮固体脂质纳米粒的制备工艺   总被引:1,自引:0,他引:1  
目的 探讨珍珠梅黄酮固体脂质纳米粒的制备工艺.方法 以硬脂酸为载体,以珍珠梅黄酮为模型药物,采用乳化蒸发-低温固化法制备固体脂质纳米粒.采用透射电镜研究载药纳米粒形态,激光粒度分析仪测定其粒径,X射线衍射仪进行物相鉴别,并对纳米粒的包封率及体外释药特性等进行了研究.结果 实验制备珍珠梅黄酮固体纳米粒为类球实体,粒径分布比较均匀,药物以分子或细小粒子分散于脂质骨架中.体外释药研究表明,纳米粒体外释药先快后慢,包封于降解材料骨架内的药物通过骨架溶蚀缓慢释放.结论 采用乳化-低温固化法制备TTF1可生物降解纳米粒,制备工艺简单,平均粒径和包封率较为理想,所制备纳米粒具有明显的缓释作用.  相似文献   

8.
杨娟  钟莹  尚曙玉  贾安 《中成药》2021,(4):841-846
目的制备白藜芦醇磷脂复合物固体脂质纳米粒,并考察其体内药动学。方法乳化超声-低温固化法制备固体脂质纳米粒,测定其粒径、Zeta电位、包封率、载药量、体外稳定性、体外释药。18只大鼠随机分为3组,分别灌胃给予原料药、磷脂复合物、固体脂质纳米粒0.5%CMC-Na混悬液(20 mg/kg),于0、2、4、8、12、24 h采血,HPLC法测定白藜芦醇血药浓度,计算主要药动学参数。结果固体脂质纳米粒平均粒径为218.6 nm,Zeta电位为-15.6 mV,包封率为84.07%,载药量为2.62%,48 h内累积溶出度为76.18%,白藜芦醇含量在48 h内无明显变化。与原料药、磷脂复合物比较,固体脂质纳米粒tmax延长(P<0.01),Cmax、AUC0~_t、AUC0~∞升高(P<0.01),其相对生物利用度与原料药相比增加至3.00倍。结论固体脂质纳米粒可提高白藜芦醇磷脂复合物体外溶出度和稳定性,促进该成分体内吸收。  相似文献   

9.
《中成药》2021,(9)
目的制备木犀草素固体脂质纳米粒,并评价其体内药动学。方法乳化蒸发-低温固化法制备固体脂质纳米粒后,考察其形态、包封率、载药量、粒径、Zeta电位、体外释药。12只大鼠随机分为2组,分别灌胃给予木犀草素及其固体脂质纳米粒冻干粉的0.5%CMC-Na混悬液(10 mg/kg),于0.15、0.5、0.75、1、1.5、2、4、6、8、12 h采血,HPLC法测定木犀草素血药浓度,计算主要药动学参数。结果所得固体脂质纳米粒呈类球形或球形,平均包封率为85.24%,载药量为5.24%,粒径为176.35 nm, Zeta电位为-33.8 mV,24 h累积溶出度为71.5%,体外释药符合Weibull模型(R~2=0.979 2)。与原料药比较,固体脂质纳米粒t_(max)延长(P0.01),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.01),相对生物利用度提高至2.28倍。结论固体脂质纳米粒可促进木犀草素口服吸收,提高其生物利用度。  相似文献   

10.
张卿  张良珂  袁佩  汪程远 《中草药》2011,42(4):691-693
目的制备具有缓释作用的和厚朴酚固体脂质纳米粒。方法采用乳化蒸发-低温固化法制备和厚朴酚固体脂质纳米粒,通过正交试验对处方进行优化,并对其包封率、粒径、体外释放等进行考察。结果制备的固体脂质纳米粒的平均粒径为159 nm,包封率为77.1%。结论乳化蒸发-低温固化法可用于制备和厚朴酚固体脂质纳米粒。  相似文献   

11.
赵庭  贾运涛  张良珂 《中草药》2017,48(17):3523-3528
目的构建载葛根素(Pur)聚乙烯亚胺/海藻酸钠(PEI/ALG)自组装纳米粒(Pur-PEI/ALG-NPs),并考察其制备工艺与性能。方法采用自组装法制备Pur-PEI/ALG-NPs;采用UV法定量,采用马尔文粒度仪对Pur-PEI/ALG-NPs进行表征;并考察其体外释放行为;以包封率和载药量为评价指标,采用中心组合设计-效应面法(CCD-RSM)优化Pur-PEI/ALG-NPs处方。结果优化后的处方:PEI质量浓度为3.2 mg/m L,ALG质量浓度为1.3 mg/m L,PEI-ALG质量比为3.75∶1,平均粒径为(118.0±0.4)nm,Zeta电位为(35.2±0.7)m V,包封率为(24.13±1.78)%,载药量为(11.17±0.71)%;体外释放结果表明Pur-PEI/ALG-NPs加快了Pur的释放速率。结论成功制备了Pur-PEI/ALG-NPs,粒径小且分布集中,表面具有丰富的正电荷,为葛根素在临床眼部治疗奠定了基础。  相似文献   

12.
谭梅娥  姜雯  曾诚  何承辉  邢建国 《中草药》2017,48(10):2051-2060
目的制备并优化田蓟苷固体脂质纳米粒(T-SLNs),对其理化性质及体外吸收和转运进行考察。方法采用高剪切乳化超声法制备了T-SLNs,利用星点设计-效应面法(CCD-RSM)对其制备工艺进行了优化,并对其平均粒径、多分散性指数(PDI)、Zeta电位、形态、包封率及体外释放等特性进行了考察,使用Caco-2细胞模型模拟小肠上皮细胞,对T-SLNs在Caco-2细胞中的吸收和转运进行了考察。结果 T-SLNs的最佳制备工艺:药脂比(质量比)0.11,大豆卵磷脂与脂质质量比1.26,聚山梨酯-80用量50.5 mg/m L,所制备的T-SLNs外观呈球形或类球形,大小相近,分散均匀,平均粒径为(86.40±0.62)nm,PDI为0.165±0.080,Zeta电位为(-24.2±0.6)m V,包封率为(89.81±1.07)%,在磷酸盐缓冲溶液(p H 6.8)中48 h累积释放率为(98.72±1.57)%。T-SLNs在Caco-2细胞模型中的吸收和转运均高于田蓟苷组。结论高剪切乳化超声法制备T-SLNs的工艺稳定可行,制备的T-SLNs具有较小的粒径和较高的包封率,相同浓度下T-SLNs在Caco-2细胞模型中的吸收和转运均高于田蓟苷组。  相似文献   

13.
侯文书  张丹参  张力  武春阳  任婧  张楠 《中草药》2019,50(8):1927-1934
目的制备具有缓释作用的姜黄素固体脂质纳米粒(curcumin solid lipid nanoparticles,Cur-SLN)和长循环固体脂质纳米粒(long-circulating solid lipid nanoparticles,LSLN),并对2种纳米粒的理化性质进行考察。方法采用乳化-超声法制备Cur-SLN,并对最优处方下制备的Cur-SLN进行包封率和载药量的测定,采用后插法制备Cur-LSLN,并考察Cur-SLN和Cur-LSLN的粒径、Zeta电位,差示扫描量热法(DSC)分析姜黄素在纳米粒中的存在状态,透射电镜观察两者的形态,透析法进行体外释放实验。结果最优处方下制备的Cur-SLN和Cur-LSLN的外观为球形及类球形,包封率分别为(89.15±0.66)%、(92.97±0.27)%,载药量分别为(1.72±0.08)%、(1.98±0.08)%,粒径分别为(144.5±4.1)、(155.0±2.6)nm,Zeta电位分别为(-23.6±0.2)、(-47.8±1.8)m V,通过DSC检测,可确定纳米粒中的Cur已转变为无定形态,体外释放实验结果显示,2种制剂的药物释放分为突释期和缓释期,均在12 h内释放较快,Cur-SLN在96 h累积释放86.63%,Cur-LSLN在96h累积释放76.98%,Cur-LSLN表现出更好的缓释效果。结论采用乳化-超声法可成功制备Cur-SLN和Cur-LSLN,PEG修饰后的纳米粒有更好的缓释性能,可延长药物在体内存在的时间,为靶向药物的开发做了铺垫。  相似文献   

14.
目的对包载马钱子碱(brucine)聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA](B-PLGA)纳米粒进行处方与工艺优化。方法采用沉淀法制备B-PLGA纳米粒,以平均粒径、多分散系数(PDI)、Zeta电位、包封率和载药量为评价指标,采用单因素考察法结合星点设计-效应面法(CCD-RSM)筛选B-PLGA纳米粒的最优处方,并将最优处方进行表征及体外释放实验。结果最优处方选择丙酮作为有机溶剂,泊洛沙姆188(F68)作为稳定剂,超声时间为1 min,磁力搅拌速度为900 r/min,磁力搅拌时间为30 min,F68用量为0.35%,载体用量为25 mg,药物用量为1.0 mg,有机相与水相的比为0.54。所制得的B-PLGA纳米粒为淡蓝色乳光透明液体,粒径为(97.12±4.23)nm,PDI为0.098±0.035,Zeta电位为(-27.30±0.31)m V,包封率为(69.24±1.42)%,载药量为(2.65±0.03)%。通过表征,纳米粒形态完整,通过体外释放实验得知,纳米粒体外释放拟合符合Higuchi方程。结论星点设计-效应面法可用于包载马钱子碱PLGA纳米粒处方与工艺优化,且优化后的纳米粒具有缓释作用。  相似文献   

15.
目的进一步评价丹参酮Ⅱ_A纳米结构脂质载体(TⅡ_A-NLC)的性质,并考察其对HaCaT细胞增殖的影响。方法采用纳米粒度仪及HPLC法对TⅡ_A-NLC的粒径和光稳定性进行考察,透析袋法测定TⅡ_A-NLC在72 h内的累积释放量并绘制释放曲线,MTT法考察TⅡ_A-NLC对HaCaT细胞增殖的影响。结果 TⅡ_A-NLC的平均粒径为(178±9)nm,多分散度指数(PDI)为0.183±0.017,Zeta电位(-27.5±5.6)m V,体外72 h累积释放量为52.28%,TⅡ_A-NLC能显著降低TⅡ_A的光降解速率,TⅡ_A在一定范围内以剂量依赖性的方式抑制HaCaT细胞增殖,同质量浓度的TⅡ_A-NLC对HaCaT细胞增殖的抑制作用显著高于TⅡ_A溶液。结论 TⅡ_A-NLC稳定性好,具有良好的缓释作用,较好的细胞生物相容性,能显著提高TⅡ_A对HaCaT细胞增殖的抑制作用。  相似文献   

16.
赖梦琴  张鹏  杨明  李翔  张婧 《中草药》2021,52(3):669-676
目的制备共载吉西他滨单磷酸盐(gemcitabine monophosphate,GMP)/紫杉醇(paclitaxel,PTX)的靶向纳米粒并对其大鼠体内药动学行为进行研究。方法采用金正均Q值法筛选GMP/紫杉醇协同比例;采用钙磷沉淀-微乳法、薄膜分散法制备1,2-二硬酯酰-sn-甘油-3-磷酰乙醇胺-聚乙二醇-c RGD修饰的非对称脂质双层紫杉醇/GMP纳米粒(P/G-NPs);采用透射电子显微镜、马尔文激光粒度仪、超滤离心法、LC-MS/MS、流通池法测定P/G-NPs的形态、平均粒径、Zeta电位、包封率及载药量、体外释放行为,并对P/G-NPs iv后在大鼠体内药动学行为进行研究。结果GMP/紫杉醇联用最佳物质的量比为17∶1,按照该配比制备得到P/G-NPs外观呈乳白色光,粒子形态呈球型,平均粒径为(85.7±10.5)nm,多分散指数(PDI)为0.14±0.06,Zeta电位为(18.30±0.63)m V。GMP和紫杉醇的包封率分别为(93.60±1.20)%和(98.70±0.50)%,载药量分别为(6.300±0.100)%和(0.800±0.004)%。体外释放行为显示P/G-NPs可实现药物的p H值敏感性缓释。药动学参数显示,P/G-NPs药-时曲线下面积是紫杉醇和吉西他滨单磷酸盐混合溶液的6倍。结论钙磷沉淀-微乳法、薄膜分散法联用可实现溶解度相异的GMP、紫杉醇的按比例协同包载,得到稳定性良好的p H值敏感性靶向纳米粒,为更好发挥其临床应用提供了支持。  相似文献   

17.
目的:制备壳聚糖修饰的载穿心莲内酯介孔二氧化硅纳米粒(CS/Ap-MSN),对其进行体外质量评价及p H响应性释药性能考察。方法:根据改良经典stober法一步合成了氨基修饰的介孔二氧化硅纳米粒(NH2-MSN),利用壳聚糖进行偶联修饰,表征其形貌及结构,通过体外释放试验考察CS/Ap-MSN在不同p H条件下的响应性释药性能。结果:CS/Ap-MSN的平均粒径(178.0±3.2)nm,多分散指数0.378±0.117,Zeta电位(34.04±0.22)mV,载药量和包封率分别为(27.8±1.7)%,(63.6±3.2)%,壳聚糖的修饰量6.3%。CS/Ap-MSN在p H 5.0的释放条件下,8 d累计释药量达53.3%;pH 7.4的释放条件下,8 d的累计释药量23.4%。结论:CS/Ap-MSN的体外释药具有p H响应性,累积释放量随p H减小而增大,且具有一定的缓释性能。  相似文献   

18.
姜雯  曾诚  于宁  谭梅娥  邢建国 《中草药》2016,47(1):57-64
目的采用星点设计-效应面法优化天山雪莲提取物(Saussureae Involucratae Herba extract,SIHE)-复合磷脂脂质体(composite phospholipid liposome,CPL)的制备工艺,并考察其体外释药规律。方法采用硫酸铵梯度法制备SIHE-CPL,通过单因素试验考察磷酸盐缓冲液p H值、药脂比(质量比)和磷脂与胆固醇质量比对平均粒径和多分散指数(PDI)的影响。基于单因素,应用星点设计考察磷脂用量、胆固醇用量2个因素对平均粒径、PDI、Zeta电位和包封率的影响,对结果进行多元线性和二项式方程拟合,用效应面法预测最佳处方,并考察其体外释放特征(动态透析法),用傅里叶红外光谱(FTIR)和X射线衍射光谱(XRD)研究SIHE-CPL的光谱特征及分子表征。结果二项式非线性拟合方程优于多元线性回归方程,理论预测值与实测值偏差较小,预测性良好。在最佳制备工艺条件下,SIHE-CPL的平均粒径为(102.7±5.1)nm,PDI为0.154±0.017,Zeta电位为(-28.4±2.2)m V,绿原酸的包封率为(87.68±2.57)%,芦丁的包封率为(84.18±2.97)%,SIHE和SIHE-CPL的体外释放规律均符合一级动力学方程,FTIR和XRD验证了SIHE-CPL的形成。结论 SIHE-CPL具有较低的平均粒径、PDI和较高的Zeta电位、包封率,星点设计-效应面法可以准确快速地优化SIHE-CPL的制备工艺。  相似文献   

19.
大黄素soluplus聚合物胶束的制备及质量评价   总被引:1,自引:0,他引:1  
目的:制备大黄素的soluplus聚合物胶束并对其进行质量评价。方法:采用薄膜分散法制备大黄素聚合物胶束(Emo-PMs)。利用粒径测定仪、透射电镜、X-射线衍射对其进行表征;采用HPLC测定Emo-PMs的包封率和载药量,流动相甲醇-0.1%磷酸(75∶25),检测波长437 nm;采用动态膜透析法考察载药胶束的体外释药特性。结果:Emo-PMs呈球形或类球形,平均粒径(65±3.8)nm,多分散系数0.099±0.022,Zeta电位-(12.7±0.19)mV,平均包封率(88.25±3.51)%,平均载药量(4.51±0.72)%;大黄素以无定形状态或分子状态包载在聚合物胶束中;Emo-PMs具有缓释作用,释放机制符合Higuchi方程。结论:制备的Emo-PMs粒径、包封率、载药量可控,具有缓释作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号