首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
InP solar cell is promising for space application due to its strong space radiation resistance and high power conversion efficient (PCE). Graphene/InP heterostructure solar cell is expected to have a higher PCE because strong near-infrared light can also be absorbed and converted additionally by graphene in this heterostructure. However, a low PCE was reported experimentally for Graphene/InP heterostructures. In this paper, electronic properties of graphene/InP heterostructures are calculated using density functional theory to understand the origin of the low PCE and propose possible improving ways. Our calculation results reveal that graphene contact with InP form a p-type Schottky heterostructure with a low Schottky barrier height (SBH). It is the low SBH that leads to the low PCE of graphene/InP heterostructure solar cells. A new heterostructure, graphene/insulating layer/InP solar cells, is proposed to raise SBH and PCE. Moreover, we also find that the opened bandgap of graphene and SBH in graphene/InP heterostructures can be tuned by exerting an electric field, which is useful for photodetector of graphene/InP heterostructures.  相似文献   

2.
Si nanowires (Si NWs) structures with good antireflection and enhanced optical‐absorption properties are used to fabricate Si quantum dots/Si NWs heterojunction solar cells. The Si NWs prepared by the metal‐assisted chemical‐etching technique exhibit a very low reflection in a wide spectral range (300–1200 nm). Correspondingly, the optical absorption reaches as high as 88.9% by weighting AM1.5G solar spectrum. Both the short current density and open current voltage are improved compared to the reference flat cell. However, the photovoltaic properties are degraded by varying the Si NWs with long etching time, possibly due to the increased etching‐induced surface states. The optimal Si NWs lead to the best cell with the power conversion efficiency of 11.3%.  相似文献   

3.
Xiao-Ping Xie 《中国物理 B》2022,31(10):108801-108801
Perovskite/silicon (Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional (3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional (2D) (BA)2(MA)n-1PbnI3n+1 (n=1, 2, 3, 4, 5) (where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells (PSCs) to construct a four-terminal (4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell (n=4) obtains a power conversion efficiency (PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride (LiF) anti-reflection layer to reduce the surface reflection loss, the current density (Jsc) of the top cell is enhanced from 15.56 mA/cm2 to 17.09 mA/cm2, the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n=3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.  相似文献   

4.
周丽  魏源  黄志祥  吴先良 《物理学报》2015,64(1):18101-018101
近年来, 基于非晶硅太阳能电池在提高能量转换效率和降低成本等方面的研究越来越受到学者的关注, 其中, 太阳能电池吸收峰值的位置, 反映了电池对该频点及其附近频谱光波吸收具有较好的效果. 然而, 非晶硅太阳能电池的吸收峰位置主要是由非晶硅和金属电极的参数决定, 很难实现位置的可调以及进一步的吸收效率增加. 所以, 在周期结构太阳能电池的金属光栅结构中引入单层石墨烯薄膜, 借助石墨烯的特殊光电特性, 即介电常数可通过改变化学势μc来调谐, 并结合频域有限差分方法的数值模拟, 理论上实现了对太阳能电池能量吸收峰位置的调谐. 针对石墨烯电导率的虚部出现奇异点, 本文提出了采用数值拟合予以解决奇异点的方法, 数值结果表明近似表达式的最大绝对误差为0.8%. 本设计结构的理论结果可为实际有机薄膜太阳能电池在工作频段的调节和优化提供理论基础和技术支撑.  相似文献   

5.
We have investigated the inverted poly (3-hexylthiophene):methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (IBHJ) solar cell with various n-type metal oxide nano particle layers on ITO and MoO3 anode buffer layer underneath Al. The IBHJ solar cell with a tin oxide nano particle layer shows the power conversion efficiency (PCE) of 3.1% and better stability compared to conventional BHJ solar cell. The PCE of this cell decreases by 3% after 2 months in ambient air while the other cells show more degradation.  相似文献   

6.
李小娟  韦尚江  吕文辉  吴丹  李亚军  周文政 《物理学报》2013,62(10):108801-108801
采用气相聚合法制备了有机/无机杂化的硅/聚3, 4-乙撑二氧噻吩核/壳纳米线阵列(SiNWs/PEDOT)太阳能电池. 相对平面结构Si/PEDOT太阳能电池, SiNWs/PEDOT太阳能电池的能量转换效率提升了7倍, 达到3.23%.对比分析反射光谱、I-V曲线及外量子效率的实验结果, 发现SiNWs/PEDOT太阳能电池性能改进的主要原因可归结为: 气相聚合法能够有效地制备出SiNWs/PEDOT电池的核/壳纳米线阵列结构, 使得器件具有高光捕获、高比结面积和高电荷收集效率. 关键词: Si/PEDOT核/壳纳米线结构 太阳能电池 气相聚合  相似文献   

7.
Morphology and surface property of ZnO thin films as electron transporting layer in perovskite solar cells are crucial for obtaining high-efficient and stable perovskite solar cells. In this work, two different preparation methods of ZnO thin films were carried out and the photovoltaic performances of the subsequent perovskite solar cells were investigated. ZnO thin film prepared by sol–gel method was homogenous but provided high series resistance in solar cells, leading to low short circuit current density. Lower series resistance of solar cell was obtained from homogeneous ZnO thin film from spin-coating of colloidal ZnO nanoparticles (synthesized by hydrolysis–condensation) in a mixture of 1-butanol, chloroform and methanol. The perovskite solar cells using this film achieved the highest power conversion efficiency (PCE) of 4.79% when poly(3-hexylthiophene) was used as a hole transporting layer. In addition, the stability of perovskite solar cells was also examined by measuring the photovoltaic characteristic for six consecutive weeks with the interval of 2 weeks. It was found that using double layers of the sol–gel ZnO and ZnO nanoparticles provided better stability with no degradation of PCE in 10 weeks. Therefore, this work provides a simple method for preparing homogeneous ZnO thin films in order to achieve stable perovskite solar cells, also for controlling their surface properties which help better understand the characteristics of perovskite solar cells.  相似文献   

8.
A depth behavioral understanding for each layer in perovskite solar cells(PSCs)and their interfacial interactions as a whole has been emerged for further enhancement in power conversion efficiency(PCE).Herein,NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wx AMPS(analysis of microelectronic and photonic structures)-1D.Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material(HTM)and perovskite layers.Meanwhile,the valence band offset(?E_v)of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer.Additionally,a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface.Conversely,the ?E_v between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%.  相似文献   

9.
Zhou JP  Chen XH  Xu Z 《光谱学与光谱分析》2011,31(10):2684-2687
P3HT:PCBM薄膜的快速和缓慢成膜过程能显著的改变异质结聚合物太阳能电池性能.通过调节旋转时间以及薄膜退火前的间隔时间,研究了P3HT:PCBM混合薄膜缓慢生长所需最佳时间.结果表明,在转速800 r·min-1下旋涂薄膜,经过50~80 s的旋涂,接着放置样品薄膜30 min以上,然后再对薄膜进行退火处理,电池效...  相似文献   

10.
《Current Applied Physics》2015,15(9):953-957
Microwave-assisted reduced graphene oxide (MR-GO) layer was applied to hole extraction layer (HEL) of polymer solar cells (PSCs) and was compared with the widely used poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) in bulk hetero-junction (BHJ) solar cells. The power conversion efficiency (PCE) of 3.57% was achieved with the MR-GO layer, which is 21% higher than that of PSCs with the conventional PEDOT:PSS HEL material. This enhancement of PCE is mainly attributed to the increase of short-circuit current density originated from the hydrophobic surface of the MR-GO layer. The hydrophobic graphene oxide surface is believed to improve wetting property and physical contact of active blends. In addition, the MR-GO interfacial layer is found to show the excellent device stability in atmospheric condition. The PCE of conventional PEDOT:PSS based PSCs showed total degradation when the device was exposed to atmospheric condition for 1000 h without any encapsulation, while that of MR-GO based PSC showed over 85% of PCE.  相似文献   

11.
In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1?0?0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)–voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm?2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.  相似文献   

12.
PbS colloidal quantum dot (CQD)‐based depleted bulk‐heterojunction solar cells were constructed, using the 1.2 μm thick nanowire array infiltrated with PbS QDs bearing Br ligands. The long‐term stability tests were performed on the solar cells without encapsulation in air under continuous light soaking using a Xe lamp with an AM1.5G filter (100 mW cm?2). Time course of solar cell performances during the tests showed two time periods with distinct behavior, that is, the initial transient time period and the relatively stable region following it. The power conversion efficiency was found to keep approximately 90% of the initial value at the end of the 3000 h light soaking test. The stability tests suggest that the PbS surface modification or passivation reactions play an important role in achieving such a high stability, and demonstrate that PbS CQD/ZnO nanowire array‐based depleted bulk‐heterojunction solar cells are highly stable. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
The n-β-FeSi2/p-Si heterojunction solar cells can be used under illumination of β-FeSi2 side or Si side. In this work, the effects of illuminated direction on the photovoltaic properties of n-β-FeSi2/p-Si heterojunction solar cells were analyzed by numerical methods. The calculated results show that the n-β-FeSi2/p-Si heterojunction solar cell under illumination of β-FeSi2 side has superior photovoltaic properties, which is consisting with the experimental reports. For the illumination of Si side, the photo-generated carriers in the back surface of Si substrate are far from the built-in electric field, resulting in the reduced conversion efficiency. The calculated results indicate that we should choose the illumination of β-FeSi2 side for n-β-FeSi2/p-Si heterojunction solar cell application.  相似文献   

14.
采用电化学氧化聚合染料增感方法,利用有机染料直接耐晒翠兰对太阳电池顶区材料聚苯胺进行了有机染料增感研究,制备出了Al栅/DS-PAn/n-Si/Al结构的染料增感聚苯胺/硅异质结太阳电池.研究表明,染料增感可使聚苯胺在光照射下光生载流子明显增强,较大幅度地改善聚苯胺的可见光谱响应;J-V特性表明,电池二极管的曲线因子约为6.3,p-n结的潜在势垒高度为0.89 eV;与未增感的PAn/n-Si异质结太阳电池相比,染料增感的DS-PAn/n-Si异质结太阳电池的短路电流和转换效率得到了较大提高,在37.2 W/m2的光照射下,经染料增感的电池短路电流较增感前提高了约6倍,填充因子可达57%,转换效率达1.42%.  相似文献   

15.
染料敏化太阳能电池(DSSC)是太阳能电池研究的热点领域之一,使用丝网印刷技术制备以纳米晶多孔TiO2薄膜为光阳极的DSSC具有低成本、简单的制备工艺和高的光电转换效率(PCE)的特点,这类太阳能电池受到人们广泛关注。为了提高这类太阳能电池的光电转换效率,通过采用不同网目相同印刷胶体制备了太阳能电池的光阳极优化印刷工艺十分重要,采用不同网目的方法研究印刷工艺对太阳能电池光伏性能的影响是十分有效的。用溶胶-凝胶法制备了TiO2胶体,通过扫描电镜看出TiO2薄膜具有多孔结构,其高比表面积有利于薄膜对染料分子的吸附,也有利于提高电池对太阳光的吸收率。经过高温烧结后丝网印刷的TiO2薄膜展现了明显的锐钛矿结构较窄衍射峰,意味着TiO2颗粒已经完全晶化且粒径增加。制备目数从100增到300导致网孔直径减少而薄膜变得更加致密,使得TiO2薄膜的XRD衍射峰逐渐增强,而从300目增到400目时由于网孔过小导致TiO2胶体通过网孔数量变小使得衍射峰强度下降。用不同网目印刷了单层TiO2光阳极研究DSSCs光伏性能的变化情况,发现制备目数是200目和300目印刷太阳能电池的性能较好,而400网目印刷太阳能电池的性能最差,这与XRD观察的结果一致。再分别采用网目为100目、200目、300目和400目的印网将胶体印刷成了多层TiO2薄膜,以此为基础组装DSSC。实验结果表明:通过不同组合网目的丝网印刷制备TiO2薄膜,组装后的染料敏化太阳能电池的光电转换效率得到了显著提升,其中以300目+200目+100目三层叠印时得到的优化光阳极的最高电池效率达到6.9%。以丝网印刷的方法制备电极不需要进行任何化学处理,在较高网目制备底层的情况下印刷的薄膜均匀牢固,且电池制备的步骤简单、重复性好,能量转换效率较高。  相似文献   

16.
《Current Applied Physics》2015,15(4):499-503
This study involves the synthesis of gallium nitride (GaN) nanoparticles (NPs) under different low temperatures using a simple chemical method. The nanoparticles are spin coated on Si substrate to fabricate the solar cell. The FESEM images obtained indicate the presence of cubic GaN nanoparticle with average diameter of 50 nm synthesized at 90 °C. The spin coating technique deposited n-GaN NPs/Si(111) produced a heterojunction solar cell with fill factor of 0.56 and conversion efficiency of 2.06%. Based on these results, this study proposes a novel low cost technique for the fabrication of GaN NPs solar cells.  相似文献   

17.
李巍  吴凌远  王伟平  张家雷  刘国栋  张大勇 《强激光与粒子束》2018,30(11):119001-1-119001-7
为选择合适的激光参量与光伏电池参量,以提高激光无线能量传输(LWPT)系统的能量转换效率,通过实验研究了LWPT系统中能量接收单元,也即光伏电池在半导体激光照射下的输出特性。通过波长为808 nm和915 nm的激光辐照GaAs和Si光伏电池,研究了不同激光功率密度、光伏电池温度、电池类型以及激光入射角度对光伏电池输出特性与能量转换效率的影响。实验中,在波长为808 nm的激光功率密度从0.06 W/cm2上升至0.37 W/cm2的过程中,Si电池的最大输出功率从0.12 W上升至0.32 W,能量转换效率从50.9%下降至21.2%;GaAs电池的最大输出功率从0.40 W上升到1.07 W,能量转换效率从57.9%下降至23.8%。随着激光功率密度的增加,光伏电池的输出功率先增加而后趋于饱和,但是高功率密度激光引起的电池温升会导致其光电转换效率的下降,所以激光功率密度的选择与光伏电池温度的控制是提高LWPT系统能量转换效率的关键因素。  相似文献   

18.
The authors demonstrate a simple method to deposit solution-processable ZnO thin film by directly dissolving the ZnO powder into aqueous ammonia. ZnO film casting from its aqueous ammonia solution (a-ZnO) is used successfully as an electron selective layer in poly(3-hexylthiophene) and indene-C60 bisadduct (IC60BA) based heterojunction solar cells with improved power conversion efficiency (PCE) compared with that using conventional solgel based ZnO (c-ZnO). The improved PCE is mainly attributed to an increase of short-circuit current density owing to the better transmittance of a-ZnO than that of c-ZnO in the absorption range of IC60BA, and efficient electron extraction at cathode. In addition, no additional by-products originated from the organic solvents are introduced as like in solgel based ZnO films.  相似文献   

19.
A novel concept based on the use of solutions containing already qualified crystalline antimony-doped tin oxide SnO2:Sb (ATO) nanoparticles has been developed. ATO nanoparticles are decorated by reduced graphene oxide (rGO) through a hydrothermal synthesis method. The electrical and optical properties of the graphene oxide films are investigated systematically. The sheet resistance (R ) of the ATO–rGO films decreases with the increase in the rGO content in the precursor solution. The R can be decreased after the ATO–rGO films annealing in the air for 1 h and can be further decreased by depositing Au on the surface of the films. The optimum property of the ATO–rGO film shows that the R is 80 Ω/□ and the transmittance is about 70 %. The ATO–rGO films are used as the anode of the organic solar cells. The anode film impact on the performance of the devices is studied. Finally, the power conversion efficiency (PCE) of the device based on the poly-(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blended is 1.85 %, and the PCE of the device based on the poly-benzo[1,2-b:4,5-b′] dithio-phene thieno[3,4-b] thiophene:PCBM blended is 3.4 %.  相似文献   

20.
《Current Applied Physics》2015,15(11):1353-1357
The Al-doped ZnO (ZnO:Al) front transparent conducting oxide (TCO) for high efficiency Si thin-film solar cell has been developed using RF magnetron sputtering deposition and chemical wet etching. Microscopic surface roughness of the as-deposited ZnO:Al film estimated by spectroscopic ellipsometry is closely related to the compactness of the TCO film, and shown to be a straightforward and powerful tool to optimize the deposition conditions for the proper post-etched surface morphology. Wet-etching time is adjusted to form the U-shaped craters on the surface of the ZnO:Al film without sharp etch pits that can cause the crack-like defects in the overgrown microcrystalline Si-absorbing layers, and deteriorate the Voc and FF of the Si thin-film solar cells. That is to say, the nanoroughness control of the as-deposited TCO film with proper chemical etching is the key optimization factor for the efficiency of the solar cell. The a-Si:H/a-SiGe:H/μc-Si:H triple junction Si thin-film solar cells grown on the optimized ZnO:Al front TCO with anti-reflection coatings show higher than 14% conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号