首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
穆洪远  程硕  李凯  李亮  潘盼  赵洵 《机械工程学报》2021,57(22):247-254
受限于成本原因,电控液压制动系统中多使用高速开关阀,但在液压阀开关控制中电磁阀的敲击噪声、液压冲击噪声和压力波动造成制动控制品质和精度劣化,因此通过脉冲宽度调制控制实现高速开关阀线性化调控性能是此类高速开关阀的设计关键。高速开关阀动态运动特性受瞬态液动力、非线性电磁力与机械惯性、弹簧力综合作用,电磁阀动力学特性决定其线性调控工作范围窄,需要系统设计电磁阀系列结构力学参数,才能实现电磁阀阀口一定开度范围内的多种非线性力的线性化变化。为此,建立高速开关阀与液压控制单元的动力学模型与联合仿真模型,通过仿真与试验验证,分析出阀座锥角、节流孔径、气隙大小等结构参数对电磁阀线性特性的影响。从而设计出合理的电磁阀结构参数,并应用于一款液压控制回路中,实现线性工作范围的拓宽,满足汽车制动安全控制的要求。  相似文献   

2.
高频小流量高速开关阀用于汽车防抱死制动系统 (ABS)增压与减压的控制,在不同温度环境下,其可靠的动态特性是ABS正常工作的重要指标。高速开关阀阀芯高频运动过程中,主要受到电磁力、液压力等因素的影响。针对液压力,建立高速开关阀不同温度、阀口两端压差、阀口开度的有限元仿真模型,分析温度、阀口两端压差和阀口开度不同时,高速开关阀液压力的变化规律。仿真结果得知,在相同的阀口开度和压差下,液压力随温度的升高而减小;阀口开度越大,液压力受温度的影响越大;同一压差和温度下,液压力随阀口开度的增大而减小。通过探寻温度、阀口两端压差及阀口开度大小对高速开关阀液压力的影响,为准确研究高速开关阀动态特性提供理论依据,从而为提高汽车ABS响应特性奠定理论基础。  相似文献   

3.
汽车ESP中采用的高速开关阀是二位二通电磁阀,通过电磁阀的开启或关闭来实现车轮轮缸的增压、保压和减压。在(10~100)Hz低频范围内,高速开关阀虽实现了平均开度控制,但阀还是会出现时开时闭的状态,且电磁阀在状态切换中存在压力响应滞后现象。为了提高液压系统的控制精度,提出了脉宽调制(Pulse Width Modulation,PWM)控制高速开关电磁阀的仿真模型,研究分析了调制频率在高频情况下,通过改变PWM下的占空比,实现高速开关阀压力精确控制的效果,达到ESP制动压力响应快且平稳。  相似文献   

4.
基于高速开关电磁阀PWM控制的汽车ABS研究   总被引:2,自引:0,他引:2  
李慧  乔印虎 《机电工程》2007,24(7):70-73
在汽车防抱死制动系统的控制过程中,一般由电子控制单元控制二位三通高速开关电磁阀来实现制动轮缸压力的增压、保压和减压3种状态控制.为了提高系统响应速度和控制精度,采用PWM控制高速开关电磁阀的液压制动式防抱死制动系统,分析了高速电磁开关阀结构型式及工作原理、PWM信号控制的ABS系统以及PWM信号控制过程.  相似文献   

5.
高速开关阀高频脉宽调制控制有效占空比工作范围的拓宽   总被引:6,自引:1,他引:6  
高速开关阀在高频脉宽调制(Pulse width modulation,PWM)控制下阀芯可悬浮在某一开度,调节占空比即可改变阀口开度,实现对流量和压力的线性控制,因此在车辆控制系统得到广泛应用。但我国自主开发的高速开关阀PWM控制的有效占空比工作范围小,阀芯较易全开或全闭,为提高阀的可控性和控制精度,需要研究拓宽占空比的工作范围。基于汽车电子稳定程序(Electronic stability program,ESP)的高速开关阀,深入分析阀芯液动力的影响因素,应用AMESim、Matlab软件建立ESP液压系统的联合仿真模型,并经过试验验证,通过仿真得出阀座锥角、入口孔径对阀芯位移的影响,提出拓宽PWM控制占空比有效工作范围的关键参数,为高速开关阀的设计开发提供参考依据。  相似文献   

6.
基于实验室自行研制的直线执行器单元,提出了一种新的车辆线控制动系统的设计方案,系统由电磁直线执行器驱动的高压液压源以及实现增压、保压和降压功能的三位高速开关阀等构成。搭建了线控制动系统的联合仿真模型,通过AMESim与Matlab/Simlink的联合仿真和正交试验确定了系统中三位高速开关阀的响应时间与阀口大小两个关键设计参数。验证了该线控制动系统的ABS性能,仿真结果表明了此系统能够提供快速、稳定的制动力,仿真过程中未发生抱死情况,车轮具有良好的制动性能,进一步说明了此线控制动系统的可靠性。  相似文献   

7.
在汽车防抱死制动系统(简称ABS)的控制过程中,一般是由电子控制单元控制二位三通的高速开关电磁阀来实现制动轮缸的压力增压、保压和减压三种状态的控制.为了提高系统的响应速度和控制精度,研究采用PWM控制高速开关电磁阀的液压制动式防抱死制动系统,分析了PWM控制原理、高速开关电磁阀的工作特性以及高速开关电磁阀在汽车防抱死制动装置中的具体应用.  相似文献   

8.
高速开关电磁阀力控系统线性增压控制研究   总被引:4,自引:0,他引:4  
针对防抱死制动系统线性增压需求,建立某高速开关电磁阀阀芯力平衡数学模型,给出阀芯平衡状态附近线性化增量微分表达式,建立液压缸压力变化数学模型,给出液压缸压差的增量表达式,得到高速开关电磁阀力控系统压力和通电电流的传递函数。通过某高速开关电磁阀电磁场和流场的有限元分析,得到阀芯所受电磁力、阀芯所受液压力及流量随阀口开度的变化曲线,研究电磁力、液压力与流量之间的定量关系,阐述高速开关电磁阀力控系统线性增压基本原理,给出力平衡点的稳定条件,提出能够实现线性增压的控制方式;结合流场、电磁场分析结果建立某高速开关阀整体模型,对电磁阀开启过程进行仿真,并进行线性增压试验,验证了该控制方式对于恒流量输出的可行性和仿真计算方法与结果的正确性。  相似文献   

9.
容腔压力控制在气动系统中的应用十分普遍,在汽车制动控制中普遍使用比例调压阀实现制动气室内压力的精确调节。将高速开关阀应用于压力控制系统代替比例阀,对于降低生产成本具有重要的意义。介绍了基于高速开关阀的单阀PID容腔压力控制策略和双阀自抗扰控制(Active Disturbance Rejection Control, ADRC)容腔压力控制策略。双阀ADRC控制策略通过将充放气过程中气体的温度变化、容腔内气体泄漏等各种模型不确定性以及内外界干扰视为一个总干扰项,利用扩张状态观测器对总干扰项进行估计并在非线性控制器的设计中进行补偿。结果表明:这两种策略均可以实现容腔内压力精确控制,使用双阀ADRC压力控制策略的控制精度更高。  相似文献   

10.
本文针对旋转平台的工作特点,拟采用高速开关阀控系统来控制旋转平台的顺时针和逆时针的往复旋转运动.以脉冲宽度调制(PWM)技术为核心的高速开关阀引进到方向流量控制系统中,可构成以高速开关阀作为先导阀,液动换向阀作为主阀的流量方向控制回路,通过液动换向阀的开度,控制进入液压马达的流量和压力,从而对旋转平台的位移、速度等进行控制.  相似文献   

11.
电磁切断阀是飞机刹车系统的重要组成部分,电磁切断阀的动态响应对刹车压力快速控制有着重要影响。通过构建电磁切断阀AMESim模型,利用仿真分析研究切断阀的动态响应特性,并找出主要影响因素;为解决切断阀开启过程中负载腔出现的压力振荡现象,通过活塞左端油路添加节流阻尼孔、主阀芯重叠处开先导槽两种优化结构进行仿真分析,发现增加节流阻尼孔,能够降低压力振荡的最大压力值,但是会延长压力上升时间;而阀芯重叠处开先导槽的方法尽管对于压力振荡基本没有影响,但能在一定程度上缩短压力上升时间,加快压力响应,进而实现更快速的刹车压力控制。  相似文献   

12.
有源先导级控制的电液比例流量阀特性研究   总被引:2,自引:0,他引:2  
针对现有技术采用压差补偿器或插装式流量传感器控制流量,会降低阀的通流能力,增加系统的功率损失和发热;大流量场合只能通过阀开口面积间接控制流量,受负载变化影响控制精度低;低工作压力范围可控性差、动态响应慢;大通径采用三级结构,构造复杂等问题,提出用小功率伺服电动机驱动小排量液压泵/马达(有源)、结合液压晶体管(Valvistor),构造新的低能耗、高可控的电液比例流量阀。该方法可扩大阀的流量控制范围,提高阀在低压时的动态响应。建立阀的静态数学模型,分析获得影响阀负载流量特性最主要的因素是反馈节流槽预开口量大小;进一步建立阀的动态数学模型,获得主阀芯稳定条件。根据阀的结构组成,建立阀的仿真模型,仿真分析主阀各参数对主阀性能的影响。结果表明,反馈节流槽预开口量越小,主阀负载流量特性越好;主阀口压降越大,主阀芯响应越快;但由动态数学模型可知主阀口压降太大且先导流量较小时,阀的稳定性也会降低。研究也表明,在保证主阀良好的动态特性前提下,可通过使先导泵/马达转速随负载压力变化,实现对阀的流量补偿,从而改善阀的负载流量特性。  相似文献   

13.
赵治国  吴枭威 《中国机械工程》2014,25(21):2968-2974
循环式HCU高速开关阀开关频率高,影响制动感受。为解决该问题,基于ABS-VI设计了可变容积式HCU,利用MATLAB/Simulink建立了车辆动力学模型,并利用AMESim建立了HCU模型。对可变容积式HCU的调压性能和ABS功能进行了联合仿真,并将其与循环式HCU进行了对比。仿真结果表明:所设计的HCU调压范围大,轮缸压力可超过主缸压力;该HCU和逻辑门限值控制策略能实现ABS功能;调压电机电压门限值对ABS性能有影响。  相似文献   

14.
在对爆胎车辆动力学特性进行分析的基础上,建立了爆胎车辆产生附加横摆力矩预估计算模型,并结合车辆电控液压制动系统中进液电磁阀开启时间与制动轮缸压力的相关特性,把附加横摆力矩预估值转化为制动轮缸增压时间,以直接控制车辆各轮缸增压时间来实现差动制动,从而产生相应的抗爆胎附加横摆力矩以平衡车辆。设计了相关试验系统,试验结果表明,该预估计算模型基本可以近似计算车辆爆胎后所需的抗爆胎横摆力矩,为提高汽车爆胎应急自动制动系统响应能力,进一步精准控制爆胎车辆运动轨迹提供了先行条件。  相似文献   

15.
飞机刹车系统是重要的飞机子系统之一。液压刹车系统是目前主流的飞机刹车系统,通常采用电液伺服阀作为刹车控制阀。针对电液伺服阀对污染敏感,易堵塞,造成机轮打滑、抱死等重大事故的缺陷,设计了一种离散数字液压飞机刹车系统。对飞机刹车过程进行分析并建立了数学模型,基于数学模型搭建了飞机刹车半实物仿真系统。提出了一种离散数字液压高效防滑刹车算法,通过控制开启数字阀的组合形式,进而控制刹车及打滑过程中压力变化的速度,有效实现防滑刹车,并在搭建的半实物仿真系统中得到了验证。  相似文献   

16.
以无人机液压弹射滑行小车缓冲系统为研究对象,给出了无人机弹射后滑行小车缓冲制动的工作原理,建立了小车缓冲系统的数学模型。基于Simulink软件对其进行求解并仿真研究了高速滑行小车缓冲制动动态性能,分析了溢流阀通径、溢流阀开启压力、液压马达排量、无人机弹射速度及小车质量对缓冲压力和小车制动位移的影响规律。结果表明:液压马达排量增大对缓冲压力增幅和小车制动位移减幅有明显影响;溢流阀通径增大有助于降低缓冲压力,但其对小车制动位移影响较小;溢流阀开启压力增大,小车缓冲制动位移和缓冲压力均显著增大;弹射速度、滑行小车质量增大,小车缓冲制动位移也增大。  相似文献   

17.
以研究智能混合动力汽车控制技术与深度强化学习算法为目标,首先,在两辆混合动力汽车的跟驰环境中,针对领航车提出一种基于深度值网络算法的能量管理策略,实现深度强化学习对发动机与机械式无级变速器的多目标协同控制;其次,针对跟随车建立基于深度强化学习的分层控制模型,实现面向智能混合动力汽车的上层跟车控制与下层能量管理;最后,仿真验证分层控制模型的有效性。结果表明,基于深度强化学习的跟车控制策略具有理想的跟踪性能;同时,基于深度强化学习的能量管理策略在领航车与跟随车中均实现了较好的燃油经济性;此外,基于深度强化学习的能量管理策略输出每组控制动作的平均时间为1.66 ms,保证了实时应用的潜力。  相似文献   

18.
 转向制动阀是实现履带式液力推土机进行转向制动操纵的核心液压件,其控制性能的优劣对整机的的操纵性能有重要影响。对转向制动阀的结构、工作原理进行了详细分析和介绍,并建立了工作过程中的数学模型。在此基础上,基于SimulationX软件仿真平台,建立了仿真模型,研究结构参数的改变对转向制动阀性能的影响,重点研究了转向制动阀的控制特性关键影响因子对其性能的影响规律,并得出了重要的观点。可为转向制动阀的结构设计及性能优化提供理论参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号