首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Olfactory bulb transplantation into the olfactory bulb of neonatal rats   总被引:2,自引:0,他引:2  
Embryonic olfactory bulbs (E14-E18) were homotopically transplanted into neonatal rats (P1-P5) after partial or total bulb removal. After different survival times, the animals were sacrificed and their brains processed for histological and immunohistochemical observations. The growing sensory axons randomly formed glomeruli within the transplanted tissue which often acquired a typical laminar organization. Myelinated fibers connecting the transplant with the telencephalon were clearly identified in one animal. Thus, the present study has shown that olfactory bulb transplants were able to differentiate, mature and establish relationship with both the periphery and the brain.  相似文献   

2.
Olfactory coding in the mammalian olfactory bulb   总被引:10,自引:0,他引:10  
There have been a number of recent approaches to the study of olfactory coding, each of which has its advantages and disadvantages. In the present review, we discuss our own work on this topic, which has involved mapping uptake of [14C]2-deoxyglucose across the entire glomerular layer of the rat main olfactory bulb in response to systematically selected pure odorant molecules. Our strategy to understand the olfactory code has involved four approaches. In the first, we determined whether the system encodes odorants in their entirety, or whether it encodes odorants by representing combinations of molecular features that add together to comprise a neural picture of each odorant. Multiple odorant features appeared to be coded by multiple receptors. Our second strategy examined the ways that such features are represented. We stimulated rats with odorants that differed greatly in their molecular structure to be able to identify a set of odorant feature response domains. Our third approach asked how odorants with very small differences in molecular structure are coded, and we found systematic differences in the representation of such features within response domains. Finally, we were able to predict odor perception from the neural representations of odorants that differed in only a single aspect of their structure. Using these strategies, we have been able to learn some of the rules by which the olfactory code operates. These rules have allowed us to predict where previously unmapped molecules would be represented and how differences in molecular representations affect olfactory perceptions.  相似文献   

3.
After unilateral bulbectomy in neonatal (P1-P5) rats, autoradiographically prelabeled presumptive olfactory bulbs from E15 and E17 embryos were transplanted in place of the removed tissue. After 2-7 months, the animals received injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the piriform cortex. Nine of the twenty animals revealed WGA-HRP-positive neurons among neurons autoradiographically labeled, providing thus evidence that the axons of the output neurons from the homotopically transplanted olfactory bulb reconnect with the host piriform cortex.  相似文献   

4.
Early sensory stimulation plays a key role in shaping the structure and function of the developing olfactory system. Here, we provide the first direct evidence for apoptotic cell death in the olfactory bulbs of rat pups during normal development and we also demonstrate that olfactory deprivation by unilateral naris occlusion causes a dramatic increase in apoptotic cell death in the glomerular and granule cell layers of the deprived bulb. The accessory olfactory bulbs displayed a remarkably high basal level of apoptosis but the occluded accessory bulb did not differ in that regard from the control accessory bulb. These results suggest that apoptosis may be an important mechanism by which the olfactory system can adjust its cell numbers in response to sensory stimuli experienced in early life, thereby underlying one form of plasticity in the developing olfactory system.  相似文献   

5.
Olfactory marker protein (OMP) is expressed by mature primary olfactory sensory neurons during development and in adult mice. In mice that lack OMP, olfactory sensory neurons have perturbed electrophysiological activity, and the mice exhibit altered responses and behavior to odor stimulation. To date, defects in axon guidance in mice that lack OMP have not been investigated. During development of the olfactory system in mouse, primary olfactory axons often overshoot their target glomerular layer and project into the deeper external plexiform layer. These aberrant axonal projections are normally detected within the external plexiform layer up to postnatal day 12. We have examined the projections of primary olfactory axons in OMP-tau:LacZ mice and OMP-GFP mice, two independent lines in which the OMP coding region has been replaced by reporter molecules. We found that axons overshoot their target layer and grow into the external plexiform layer in these OMP null mice as they do in wild-type animals. However, in the absence of OMP, overshooting axons are more persistent and remain prominent until 5 weeks postnatally, after which their numbers decrease. Overshooting axons are still present in these mice even at 8 months of age. In heterozygous mice, axons also overshoot into the external plexiform layer; however, there are fewer axons, and they project for shorter distances, compared with those in a homozygous environment. Our results suggest that perturbed electrophysiological responses, caused by loss of OMP in primary olfactory neurons, reduce the ability of primary olfactory axons to recognize their glomerular target.  相似文献   

6.
The olfactory mucosa of neonatal rats was transplanted within the olfactory bulb of littermates to investigate whether the olfactory bulb would have played a role in the differentiation of the olfactory neurons and whether the olfactory axons, growing out from the transplant, would have interacted with the olfactory glomeruli of the host. The observations were conducted on sections stained with Gill's hematoxylin, Loots' silver method, and the immunohistochemical technique for the demonstration of the olfactory marker protein (OMP). The olfactory neurons of the transplant (those localized in the neuroepithelium and those migrating from it into the bulbar parenchyma) could become fully differentiated but only few of them were OMP positive. Numerous sensory axons originated from the transplanted olfactory mucosa, however, they did not form ectopic glomeruli nor did they interact with the glomeruli of the host. These results indicate that the olfactory bulb, in vivo, does not affect the number of olfactory neurons expressing OMP and that the ectopically located neurons lack the cues to recognize the host glomeruli.  相似文献   

7.
Olfactory bulb ensheathing cells enhance peripheral nerve regeneration.   总被引:18,自引:0,他引:18  
Sciatic nerve resection leaving a 15 mm gap could not be repaired by bridging the stumps with a silicone tube prefilled with a laminin gel. However, when purified olfactory ensheathing cells (EC) were added to the gel filling the tube, successful axonal regeneration was observed in 50% of rats. With 12 mm gaps, regeneration occurred in 79% of rats with transplanted EC compared with 60% of those receiving collagen gel alone. Therefore, ECs help repair severe peripheral nerve injuries, in addition to their ability to promote axonal regeneration within the central nervous system.  相似文献   

8.
Extracellular adenosine is present at the mammalian neuromuscular junction (NMJ) by virtue of its release from activated nerve terminals and muscle fibers, and as a metabolite of adenosine tri-phosphate, which is coreleased with acetylcholine. Two activities for adenosine have been described: an inhibitory effect presumed to be modulated by the A1 receptor subtype, and a facilitatory effect mediated by the A2A receptor subtype. To date, only pharmacological evidence is available for these actions. We have used an antibody against the A2A receptor subtype, and demonstrated that A2A receptors are present on presynaptic motor nerve terminals at NMJs but not on associated glial or muscle cells, in the mouse. These results therefore provide additional evidence that there are multiple adenosine receptors present at the NMJ, and that stimulation of quantal and nonquantal release of acetylcholine (ACh) could be mediated by A2A receptors.  相似文献   

9.
Tritiated thymidine prelabeled presumptive olfactory bulbs (E15–E17, and E19) were homotopically transplanted in unilaterally partially or totally bulbectomized neonatal rats (P1–P5). [3H]thymidine was injected to pregnant rats at the time when the large neurons of the bulb were undergoing cellular division. After postoperative survival times from 20 days to 7 months, the animals were sacrificed and processed for histological, immunohistochemical and autoradiographic observations. The nuclear autoradiographic label allowed easy recognition of the transplanted tissue in totally bulbectomized animals after short survival and in partially bulbectomized animals after long survival. The autoradiographic label was strictly confined to the transplanted tissue and intermingling of host and donor neurons was never observed. The reliability of the autoradiographic technique in our study will enable us to mark those neurons whose axons can be demonstrated, by retrograde tracing methods, to establish connections with the host brain.  相似文献   

10.
In most neural systems, developing neurons are trophically dependent on contact with their synaptic target for their survival and for some features of their differentiation. However, in the olfactory system, it is unclear whether or not the survival and differentiation of olfactory sensory neurons depend on contact with the olfactory bulb (normally the sole synaptic target for these neurons). In order to address this issue, we examined neuronal life-span and differentiation in adult rats subjected to unilateral olfactory bulb ablation at least 1 month prior to use. Life-span of a newly generated cohort of olfactory neurons was determined by labeling them at their "birth" via the incorporation of 3H-thymidine. In the absence of the bulb, neurons are continually produced at a twofold greater rate. However, the epithelium on the ablated side is thinner, indicating that average neuronal life-span must be reduced in the targetless epithelium. Indeed, nearly 90% of the labeled neurons disappear from the bulbectomized side between 5 d and 2 weeks of neuronal age. Moreover, on electron microscopic examination, olfactory axons are degenerating in large numbers on the ablated side. Since labeled neurons migrate apically through the width of the epithelium during this same period, it appears that most, if not all, neurons on the ablated side have a life-span on the order of 2 weeks or less. In contrast, there is a more moderate degree of neuronal loss on the unoperated side of the same animals during the first 2 weeks after tracer injection, and that occurs while the neurons are concentrated in the deeper half of the epithelium, suggesting that there is a preexisting population of neurons in the control epithelium that does not die during this period. Likewise, degenerating axons are much less frequent on the unoperated side. We conclude that life-span is significantly shorter for olfactory neurons born in the targetless epithelium and that olfactory neurons are trophically dependent on the presence of the bulb for their prolonged survival. Neuronal differentiation in the absence of the bulb was assessed according to ultrastructural criteria and the pattern of protein expression using antisera to the growth associated protein GAP-43 and the olfactory marker protein. By both measures, most neurons in the epithelium on the bulbectomized side, but not all, are immature.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
After DiI injections into the diencephalon of Xenopus, two types of retrogradely labelled cells were found in the nasal area: (i) receptor cells in the olfactory epithelium and (ii) a small cell group located between the main olfactory epithelium and the vomeronasal system. These results reveal an extensive extrabulbar olfactory projection of olfactory receptor cells. Fibers of these cells do not terminate in the olfactory bulb but innervate targets in the diencephalon directly. The other type of retrogradely labelled cells, apparently, are not part of any epithelium. They resemble similar cell groups which have previously been regarded as part of the nervus terminalis system in other vertebrates.  相似文献   

12.
Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. We describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.  相似文献   

13.

Background

The axons of Olfactory Sensory Neurons (OSNs) project to reproducible target locations within the Olfactory Bulb (OB), converting odorant experience into a spatial map of neural activity. We characterized the initial targeting of OSN axons in the zebrafish, a model system suitable for studying axonal targeting early in development. In this system the initial targets of OSN axons are a small number of distinct, individually identifiable neuropilar regions called protoglomeruli. Previously, Olfactory Marker Protein-expressing and TRPC2-expressing classes of OSNs were shown to project to specific, non-overlapping sets of protoglomeruli, indicating that particular subsets of OSNs project to specific protoglomerular targets. We set out to map the relationship between the classical Odorant Receptor (OR) an OSN chooses to express and the protoglomerulus its axon targets.

Methods

A panel of BACs were recombineered so that the axons of OSNs choosing to express modified ORs were fluorescently labeled. Axon projections were followed into the olfactory bulb to determine the protoglomeruli in which they terminated.

Results

RNA-seq demonstrates that OSNs express a surprisingly wide variety of ORs and Trace Amine Associated Receptors (TAARs) very early when sensory axons are arriving in the bulb. Only a single OR is expressed in any given OSN even at these early developmental times. We used a BAC expression technique to map the trajectories of OSNs expressing specific odorant receptors. ORs can be divided into three clades based upon their sequence similarities. OSNs expressing ORs from two of these clades project to the CZ protoglomerulus, while OSNs expressing ORs from the third clade project to the DZ protoglomerulus. In contrast, OSNs expressing a particular TAAR project to multiple protoglomeruli. Neither OR choice nor axonal targeting are related to the position an OSN occupies within the olfactory pit.

Conclusions

Our results demonstrate that it is not the choice of a particular OR, but of one from a category of ORs, that is related to initial OSN target location within the olfactory bulb. These choices are not related to OSN position within the olfactory epithelium.
  相似文献   

14.
Sublaminar organization of the mouse olfactory bulb nerve layer   总被引:9,自引:0,他引:9  
Olfactory sensory neuron (OSN) axons coalesce to form the olfactory nerve (ON) and then grow from the olfactory epithelium to the olfactory bulb (OB), enter the olfactory nerve layer (ONL), reorganize extensively, and innervate specific glomeruli. Within the ON and ONL a population of glial cells, the olfactory ensheathing cells (OECs), surround OSN axon fascicles. To better understand the relationship between OECs and axon fascicles in the ONL of the adult mouse, we used confocal microscopy and antibodies to the low affinity nerve growth factor receptor p75 (p75), glial fibrillary acidic protein (GFAP), neuropeptide Y (NPY), and S-100 to identify glia. Antibodies to olfactory marker protein (OMP) and neuronal cell adhesion molecule (NCAM) were used to identify OSN axons. Electron microscopy characterized the ONL ultrastructure. We found that glial processes were not uniformly distributed in the ONL of the mouse. The p75(+) OEC processes were restricted to the ON and the outer ONL sublamina, and oriented parallel to the plane of the OB layers. In the inner ONL NPY(+) OEC-like processes were seen. GFAP(+) processes were restricted to the inner ONL sublamina, the ONL/GL boundary, and the GL, where they delineated loosely aggregated axon fascicles that entered the glomeruli obliquely. S-100(+) processes and somata were distributed throughout the ONL; the outer and inner ONL were equivalent in their S-100 staining. Ultrastructural studies showed that, although OECs could be identified in both the outer and inner ONL, in the latter, their relationship to bundles of OEC axons appeared less orderly than seen in the outer ONL. Our data demonstrate a differential organization of the ONL that could subserve distinct functions; axon extension may occur predominantly in the outermost ONL, whereas glomerular targeting occurs in the inner sublamina of the ONL.  相似文献   

15.
Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The catecholamine innervation of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex was studied in the rat using biochemical analysis and fluorescence histochemistry. Biochemical studies demonstrate a moderate norepinephrine (NE) content in all olfactory structures, a high dopamine (DA) content in the olfactory tubercle and a low DA content in the olfactory bulb, anterior olfactory nucleus and piriform cortex. Following locus coeruleus lesions NE content decreases 71% in the olfactory bulb, 82% in the anterior olfactory nucleus, 62% in olfactory tubercle and 77% in piriform cortex...  相似文献   

17.
Vertebrate odorant receptor (OR) genes are divided phylogenetically into two distinct classes: the fish-like class I and the terrestrial-specific class II. In the present study, we systematically analysed mouse class I OR genes (42 subfamilies) to elucidate the expression profiles in the olfactory epithelium (OE) and the projection sites of their olfactory sensory neurons (OSNs) in the olfactory bulb (OB). In situ hybridization (ISH) revealed that most class I OR genes (36 subfamilies) were expressed in the dorso-medial zone (zone 1) of the OE. Furthermore, there appeared to be no significant differences in the distributions of OSNs expressing class I genes within zone 1. These results indicate that there is a clear boundary between zone 1 and non-zone 1 areas in the OE. Some class I ORs are known to possess ligand specificity for aliphatic acids, aldehydes and alcohols. Our ISH analysis has revealed that OSNs expressing the class I ORs in zone 1 tend to converge their axons on a cluster of glomeruli in an antero-dorsal domain that is assumed to be involved in responses to the aliphatic compounds on the OB.  相似文献   

18.
19.
Olfactory ensheathing cells (OECs) are the glial cells that derive from the olfactory placode, envelop olfactory axons in the course of migration from the olfactory epithelium to the olfactory bulb and reside primarily in the olfactory nerve layer. OECs transplantation as a promising experimental therapy for axonal injuries has been intensively studied; however, little is known about their roles in olfactory bulb development. In this study, we examined the effects of OECs on the migration of neural progenitors in rostral migratory stream (RMS). Initially, the neurosphere migration assay showed that OEC‐conditioned medium promoted progenitors to migrate from RMS neurospheres in a concentration dependent manner. Moreover, co‐culturing OECs nearby the RMS explants led to asymmetric migration of explants in different developing stages. However, OECs could influence the migration in a distance not further than 1.5 mm. Finally, slice assay that mimic the circumstance in vivo revealed that OECs had a chemoattractive activity on RMS neural progenitors. Together, these results demonstrate that OECs attract neural progenitors in RMS through the release of diffusible factors and it is likely that OECs mainly influence radial migration in the olfactory bulb but not tangential migration of the RMS invivo during development. This suggests a previously unknown function for OECs in olfactory development and a novel mechanism underlying the targeting of RMS cells. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Increasing evidence suggests that zinc modulates synaptic transmission in the olfactory bulb and other brain regions. We investigated the sensitivity of AMPA receptors on the bulb's two primary neuronal populations to several concentrations of zinc. Zinc (30-1000 microM) was coapplied to mitral/tufted cells and interneurons during AMPA-evoked currents, and current responses (potentiation, inhibition, no effect) were analyzed. Both neuronal populations expressed zinc-sensitive and zinc-insensitive AMPA receptors. However, the frequency and magnitude of zinc's effects varied with cell type. In addition, zinc did not always have biphasic effects at AMPA receptors (potentiation at low concentrations; inhibition at high concentrations), as reported in other brain regions. Zinc's diverse effects suggest that zinc may alter odor information processing by differential modulation of excitatory circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号