首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In systemic lupus erythematosus (SLE), autoantibodies directed against complement components of the classical pathway, especially against C1q, are associated with severe disease and are of prognostic value for flares of lupus nephritis. Mannose-binding lectin (MBL), the recognition unit of the MBL pathway of complement activation, has structural similarities to C1q. Deficiencies of MBL have been shown to predispose to the development of SLE and to influence the course of the disease. We hypothesized that the presence of autoantibodies to MBL, analogous to autoantibodies to C1q in patients with SLE, may contribute to disease development. The occurrence of anti-MBL autoantibodies was assessed by enzyme-linked immunosorbent assay (ELISA) of 68 serum samples from 20 patients with SLE and in serum from 70 healthy controls. Levels of antibodies directed against MBL were significantly higher in patients with SLE compared to healthy subjects. No significant difference was found between patients with active disease compared to those with inactive disease. While the occurrence of anti-C1q autoantibodies was associated with renal involvement, no such relationship was found for anti-MBL autoantibodies. A significant correlation was found between anti-MBL and anti-C1q antibody levels. The level of anti-MBL antibodies was negatively correlated with MBL-complex activity of circulating MBL. Anti-MBL autoantibodies were of the immunoglobulin G (IgG) isotype and the binding site of IgG anti-MBL was located in the F(ab')2 portion. We conclude that anti-MBL are present in sera from SLE patients and influence the functional activity of MBL.  相似文献   

2.
Serological and histological studies were carried out to explore the role of the lectin complement pathway in the pathogenesis of cryoglobulinemic glomerulonephritis. Sixteen patients with mixed cryoglobulinemia type II with glomerulonephritis (GN) were enrolled. All cases had hepatitis C virus (HCV) infection. The serum concentration of mannose-binding lectin (MBL) was significantly higher in the GN patients than in the normal controls according to ELISA (P < 0.01). IgG, IgM, C1q, C4d, HCV envelope antigen, MBL, and MBL-associated serine protease-1 (MASP-1) could be visualized in the cryoprecipitate of the 16 patients by Dot blot assay. Renal biopsy specimens obtained from 3 patients were examined by immunohistochemistry, and the glomeruli strongly stained for IgG, IgM, MBL, MASP-1, C4d, C3c, and C3d in a fringe-like pattern. The pattern of HCV constituent deposition was partially fringe-like. The complement profiles of the 16 cases were distinctive; briefly, the serum levels of C1q, C2, and C3 were reduced, although the levels of circulating regulatory proteins (C1-inhibitor, factor H, and factor I) were in the normal range. The serum C4 level was significantly reduced. These results indicate that immune complex formation involves molecules of the lectin pathway and leads to organ damage in cryoglobulinemic glomerulonephritis.  相似文献   

3.
Serglycin (SG) is a proteoglycan expressed by hematopoietic cells and is constitutively secreted by multiple myeloma (MM) cells. SG participates in the regulation of various inflammatory events. We found that SG secreted by human MM cell lines inhibits both the classical and lectin pathways of complement, without influencing alternative pathway activity. The inhibitory effect of SG is due to direct interactions with C1q and mannose-binding lectin (MBL). C1q-binding is mediated through the glycosaminoglycan moieties of SG, whereas MBL binds additionally to SG protein core. Interactions between SG and C1q as well as MBL are diminished in the presence of chondroitin sulfate type E. In addition, we localized the SG-binding site to the collagen-like stalk of C1q. Interactions between SG and C1q as well as MBL are ionic in character and only the interaction with MBL was found to be partially dependent on the presence of calcium. We found the serum levels of SG to be elevated in patients with MM compared to healthy controls. Moreover, we found that SG expressed from myeloma plasma cells protects these cells from complement activation induced by treatment with anti-thymocyte immunoglobulins. This might protect myeloma cells during immunotherapy and promote survival of malignant cells.  相似文献   

4.

Background/aims

Lupus nephritis (LN) is one of the most serious manifestations of SLE occurring in 66–90% of these patients. The complement system is part of the innate immunity and modulator of inflammation and the adaptative immune response. Mannan-binding lectin (MBL) and Ficolin-2 (FCN-2) are important members of the lectin pathway of complement activation. Despite the significant participation of complement in the pathogenesis of the LN, there are few reports demonstrating “in situ” deposition of complement components in renal biopsy specimens in this disorder. The present study investigated the deposition of complement components in kidney specimens of LN patients.

Methods

Renal biopsies of 11 patients with SLE and LN were evaluated for immunofluorescence staining for IgG, IgA, IgM, C3, and C1q. Additionally, MBL, FCN-2 and C5b-9 were researched using monoclonal antibodies.

Results

All the biopsies were positive for IgG, C3, and C1q, eight were positive IgM and five had IgA deposition in glomerular tissue. The terminal complex of complement C5b9 was positive in all cases, MBL in nine (82%) cases; seven (63.6%) of them presenting concomitantly FCN-2 deposition. Patients presenting MBL deposition had higher mean of urinary proteins (9.0 g/day) than patients with negative MBL deposition (mean of 2.3 g/day).

Conclusions

In this study, we demonstrated in situ the participation of complement in the renal injury, including MBL and FCN-2 of the lectin pathway; also the strong role of C5b-9 in the pathogenesis of LN.  相似文献   

5.
The aim of the present study was to elucidate the correlation between complement pathways and clinicopathological findings in post-streptococcal acute glomerulonephritis (PSAGN). Immunohistological staining was performed on renal specimens obtained from 18 patients with PSAGN and 20 controls, using antibodies against IgG, IgA, IgM, C1q, C3c, C4, fibrinogen, factor B, C4-binding protein (C4-bp), C5b-9, CD59, mannose-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1). Controls showed no deposition of any antibody. In seven patients, glomerular deposits of C3c, C4, factor B, C4-bp, C5b-9, CD59, MBL and MASP-1 were found. In the remaining 11 patients, glomerular deposits of neither C4 nor MBL/MASP-1 were found, and glomerular deposits of C3c, factor B, C5b-9 and CD59 were evident. C4-bp was detected in seven of these 11 patients. Glomerular deposits of fibrinogen were detected in five of seven patients with MBL/MASP-1 deposits and in only two of 11 patients without MBL/MASP-1 deposits. Hematuria was prolonged in three of seven patients with MBL/MASP-1 deposits through follow up, whereas urinalysis was normal in all patients without MBL/MASP-1 deposits. However, the histological indicators were not different between the two groups. To the authors' knowledge this is the first report to show that complement activation through both the alternative and lectin pathways is evident in some patients with PSAGN. Complement activation is promoted in situ in the glomerulus.  相似文献   

6.
The serum lectins mannose-binding lectin (MBL), L-ficolin, and H-ficolin are recognition molecules in the lectin complement pathway, which play an important role in innate immunity. To assess involvement of the lectin pathway in the clearance of apoptotic cells, we used flow cytometry to quantify binding of MBL, L-ficolin, and H-ficolin to apoptotic HL60, U937, and Jurkat cells induced by actinomycin D. When apoptotic cells were incubated with normal human serum, MBL and L-ficolin bound to all three cell lines tested; moreover, H-ficolin bound to apoptotic Jurkat cells only. Subsequently, C4 and C3 were deposited on apoptotic cells of all three cell lines. MBL, L-ficolin, and H-ficolin binding to apoptotic cells was confirmed by the use of purified proteins. Purified C4 added to apoptotic cells that had bound pure L-ficolin was deposited on the cell surfaces. In L-ficolin-depleted serum, C3 deposition on HL60 or Jurkat cells decreased to approximately 50% or 70%, respectively, in comparison to the serum before L-ficolin depletion. We conclude that L-ficolin, in addition to MBL, recognizes apoptotic cells and activates complement via the lectin pathway. We also observed in vitro binding of L-ficolin and H-ficolin to cC1q receptor (C1q receptor specific for the collagenous region of C1q)/calreticulin, a candidate receptor for the collagenous region of MBL and C1q. Thus, L-ficolin and H-ficolin as well as MBL participate in the clearance of apoptotic cells through complement activation.  相似文献   

7.
Experimental animal models indicate that complement contributes to tissue damage during brain ischaemia and stroke, but limited data are available for a role of the complement in human stroke. We, therefore, evaluated whether acute ischaemia leads to complement activation in human brain. Indirect immunohistochemical staining was performed on paraffin-embedded, formalin-fixed human brain from 10 patients and 10 controls. Complement components C1q, C3c and C4d were detected in all ischaemic lesions, suggesting activation via the classical pathway. C9, C-reactive protein and IgM were detected in necrotic zones. Marked CD59 and weak CD55 expression were found in normal brains, but these complement regulators were virtually absent in ischaemic lesions. Modest amounts of mannose-binding lectin (MBL), MBL-associated serine protease-2 and factor B were found in both ischaemic lesions and controls. These data suggest that increased deposition of complement components combined with decreased expression of complement regulators is a possible mechanism of tissue damage during ischaemia in human brain.  相似文献   

8.
Inherited deficiencies in components of the classical complement pathway are strong disease susceptibility factors for the development of systemic lupus erythematosus (SLE) and there is a hierarchy among deficiency states, the strongest association being with C1q deficiency. We investigated the relative importance of the different complement pathways regarding clearance of apoptotic cells. Phagocytosis of labelled apoptotic Jurkat cells by monocyte‐derived macrophages in the presence of sera from individuals with complement deficiencies was studied, as well as C3 deposition on apoptotic cells using flow cytometry. Sera from individuals deficient in C1q, C4, C2 or C3 all showed decreased phagocytosis. Mannose binding lectin (MBL) and the alternative pathway did not influence phagocytosis. Notably, the components of the complement classical pathway, including C1q, were equally important in clearance of apoptotic cells. This indicates that deposition of C3 fragments is of major significance; we therefore studied C3 deposition on apoptotic cells. Experiments with MBL‐deficient serum depleted of C1q or factor D confirmed the predominance of the classical pathway. At low dilution, sera deficient of C1q, C4 or C2 supported C3 fragment deposition demonstrating alternative pathway activation. In conclusion, we have found that complement‐mediated opsonization and phagocytosis of apoptotic cells, particularly those undergoing secondary necrosis, are dependent mainly upon an intact classical pathway. The alternative pathway is less important, but may play a role in some conditions. C1q was not more important than other classical pathway components, suggesting a role in additional pathogenetic processes in SLE other than clearance of apoptotic cells.  相似文献   

9.
An assay for the mannan-binding lectin pathway of complement activation.   总被引:12,自引:0,他引:12  
The mannan-binding lectin (MBL) pathway of complement activation has been established as the third pathway of complement activation. MBL is a carbohydrate-binding serum protein, which circulates in complex with serine proteases known as mannan-binding lectin associated serine proteases (MASPs). When bound to microorganisms, the MBL complex activates the complement components C4 and C2, thereby generating the C3 convertase and leading to opsonisation by the deposition of C4b and C3b fragments. This C4/C2 cleaving activity is shared with the C1 complex of the classical pathway of complement activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt the C1 complex, whereas the carbohydrate-binding activity of MBL and the integrity of the MBL complex is maintained under hypertonic conditions. In the assay described here, the specific C4b-depositing capacity of the MBL pathway was determined by incubating serum diluted in buffer containing 1 M NaCl in mannan-coated microtiter wells before the addition of purified C4. The interassay coefficient of variation in the ELISA version was 7.3%. As expected no activity was found in MBL-deficient serum. When 100 normal serum samples were analysed we found that the MBL level correlated with the amount of C4b deposited on the mannan-coated surface. However, we also found a threefold variation in C4b-depositing capacity between individuals with similar MBL concentrations. The assay permits for the determination of MBL complex activity in serum and plasma samples and may thus be used to evaluate the clinical implications of complement activation via this pathway.  相似文献   

10.
Mannose-binding lectin (MBL) is a C-type lectin involved in the first line of host defense and it requires MBL-associated serine proteases (MASP) for activation of the lectin complement pathway (LCP). Recently we reported that human ficolins, L-ficolin/P35 and H-ficolin/Hakata antigen, as well as MBL activate the LCP in association with MASP. We investigated in vitro expression of complements of the lectin complement pathway in several cell lines. Out of 17 cell lines tested using RT-PCR, a human glioma cell line, T98G, expressed high levels of H-ficolin/Hakata antigen, MASP1 and MASP3 mRNAs. Similar results were obtained in four other glioma lines. In addition, mRNAs for C1r, C1s, C2, C3, C4, C5 and C6 were also detected in T98G cells, but very low amount of mRNAs for C1q and MBL. MBL mRNA was seen in two of the other glioma cell lines. An ELISA of culture supernatants showed that T98G cells secreted a considerable amount of MASP-1 and MASP-3 proteins. SDS-PAGE and immunoblotting analyses showed the secreted H-ficolin/Hakata antigen, MASP-1 and MASP-3 to be 34, 81 and 105 kDa in size respectively, similar to their serum counterparts. Since the glioma cells used are derived from astrocytes, this suggests that human astrocytes may be a source of some components of the LCP in the brain.  相似文献   

11.
Mannose-binding lectin (MBL) is a key element in innate immunity with functions and structure similar to that of complement C1q. It has been reported that MBL deficiency is associated with occurrence of systemic lupus erythematosus (SLE). We hypothesized that anti-MBL antibodies, if present, would affect the occurrence or disease course of SLE, by reduction of serum MBL levels, interference of MBL functions, or binding to MBL deposited on various tissues. To address this hypothesis, we measured the concentration of anti-MBL antibodies in sera of 111 Japanese SLE patients and 113 healthy volunteers by enzyme immunoassay. The titres of anti-MBL antibodies in SLE patients were significantly higher than those in healthy controls. When the mean + 2 standard deviations of controls was set as the cut off point, individuals with titres of anti-MBL antibodies above this level were significantly more frequent in SLE patients (9 patients) than in controls (2 persons). One SLE patient had an extremely high titre of this antibody. No associations of titres of anti-MBL antibodies and (i) genotypes of MBL gene, (ii) concentrations of serum MBL, or (iii) disease characteristics of SLE, were apparent. Thus, we have confirmed that anti-MBL antibodies are indeed present in sera of some patients with SLE, but the significance of these autoantibodies in the pathogenesis of SLE remains unclear.  相似文献   

12.
《Immunobiology》2022,227(6):152263
Candida tropicalis is an opportunistic fungal pathogen and is one of the most frequently isolated non-albicans species. It can cause localised as well as invasive systemic infections particularly in immunocompromised patients. Increased resistance to common anti-fungal drugs is an emerging problem. In order to establish disseminated infections, Candida has evolved several strategies to escape the host immune system. A detailed understanding of how C. tropicalis escapes the host immune attack is needed as it can help develop novel anti-fungal therapies. Secreted aspartyl proteinases (Saps) of C. albicans have been shown to be determinants of virulence and immune evasion. However, the immune evasion properties of C. tropicalis Saps have been poorly characterised. This study investigated the immune evasion properties of C. tropicalis secreted aspartic protease 1 (Sapt1). Sapt1 was recombinantly produced using a Kluyveromyces lactis yeast expression system. A range of complement proteins and immunogloublins were screened to test if Sapt1 had any proteolytic activity. Sapt1 efficiently cleaved human mannose-binding lectin (MBL) and collectin-11, which are the initiating molecules of the lectin pathway of the complement system, but not l-ficolin. In addition, Sapt1 cleaved DC-SIGN, the receptor on antigen presenting dendritic cells. Proteolysis was prominent in acidic condition (pH 5.2), a characteristic of aspartyl protease. No proteolytic activity was detected against complement proteins C1q, C3, C3b, IgG and IgA. In view of the ability of Sapt1 to cleave MBL and collectin-11, we found that Sapt1 could prevent activation of the complement lectin pathway. RT-qPCR analysis using three different C. tropicalis clinical isolates (oral, blood and peritoneal dialysis fluid) revealed relatively higher levels of mRNA expression of Sapt1 gene when compared to a reference strain; Sapt1 protein was found to be secreted by all the tested strains. Lectin pathway and its initiating components are crucial to provide front line defence against Candida infections. For the first time, we have shown that a Candida protease can proteolytically degrade the key initiating components of lectin pathway and inhibit complement activation. Findings from this study highlight the importance of exploring Sapt1 as a potential therapeutic target. We conclude that C. tropicalis secretes Sapt1 to target the complement lectin pathway, a key pattern recognition and clearance mechanism, for its survival and pathogenesis.  相似文献   

13.
While the interaction of complement component C1q with cellular proteins is extensively studied, much less is known about the binding of the structurally related molecule, mannan-binding lectin (MBL) to various cells. Here we show by cytofluorimetry that the interaction of MBL with immunocompetent cells is much more restricted than that of C1q. It is shown that under conditions of physiological ionic strength MBL binds to human monocyte-derived macrophages (Mphi) and monocytoid cell lines, but not to T and B lymphocytes, in contrast to C1q, which interacts with all these cells under the same conditions. As opposed to the binding of C1q, low ionic strength does not improve the interaction of MBL with Mphi. No competition for cellular binding sites was found when MBL and C1q were added simultaneously to the cells. Studying the functional consequences of the interaction, we found that the release of TNF-alpha from Mphi is induced by C1q but not by MBL. Production of complement C3 by Mphi is stimulated by C1q strongly, while the effect of MBL is much weaker. C3 produced upon C1q-mediated triggering is shown to opsonize RBC, resulting in enhanced phagocytosis. These results suggest that cell membrane molecules binding MBL and C1 q are not identical; moreover, biological functions exerted by these proteins are also markedly different.  相似文献   

14.
C1q, the recognition molecule of the classical pathway of complement, binds to endothelial cells, leading to cell activation. Mannose-binding lectin (MBL), a recognition molecule of the lectin pathway, is structurally and functionally related to C1q. Therefore, we investigated the interaction of MBL with human umbilical vein endothelial cells (HUVEC). C1q and MBL were purified from normal human plasma and binding to HUVEC was evaluated by flow cytometry. Cross-competition experiments were performed using MBL and C1q labeled with digoxygenin. MBL, similar to C1q, exhibited a dose-dependent binding to HUVEC under calcium-free conditions, suggesting involvement of its collagenous domains. Pre-incubation of HUVEC with MBL inhibited the binding of digoxygenin-labeled MBL at equimolar concentrations, confirming the specificity of the interaction. Pre-incubation of HUVEC with MBL inhibited the binding of C1q and vice versa. Activation of HUVEC with LPS resulted in increased C1q and MBL binding. Stimulation of HUVEC with MBL did not result in a detectable increase in cytokine production. Based on these results, we propose that MBL and C1q bind to a shared receptor on endothelial cells. Interaction of MBL and C1q with receptors on endothelial cells may be involved in inflammatory processes, and in clearance of pathogens and apoptotic cells.  相似文献   

15.
Human neutrophil peptide-1 (HNP-1) is a member of the alpha-defensin family. Defensins are cationic antimicrobial peptides, which play an important role in the antimicrobial response to microorganisms. In addition, recent studies have revealed the involvement of defensins in inflammation, immunity and wound repair. Defensins are present in the azurophilic granules of neutrophils and are released upon neutrophil stimulation. Previous studies showed that HNP-1 binds to C1q and inhibits the classical complement pathway. In view of the structural and functional similarity between C1q and MBL, we have now examined the interactions between HNP-1 and MBL. We observed a dose-dependent binding of HNP-1 to MBL in calcium-free buffer, indicating that HNP-1 binds to MBL most likely via the collagenous domains. To identify the binding sites in HNP-1 involved in the binding to C1q and MBL, we used a series of overlapping synthetic linear peptides that spanned the entire HNP-1 sequence. Both MBL and C1q showed a dose-dependent binding to the same set of peptides, suggesting a similar binding site in HNP-1 for both MBL and C1q. Strongest binding was observed to peptides containing the C- or N-terminal part of the HNP-1 molecule. Using an ELISA based system, we demonstrated that HNP-1 inhibits activation of both the classical pathway and lectin pathway of complement. Furthermore, we demonstrated that C1q and MBL can form complexes with HNP-1 in solution. Together, the data indicate that HNP-1 interacts with both C1q and MBL efficiently resulting in inhibition of both the classical and the lectin pathway of complement. We conclude that HNP-1 may play a role in protection against tissue injury during inflammatory conditions by inhibiting the early phase of complement activation.  相似文献   

16.
Activation of complement pathways, leading to production of C3a and C5a anaphylatoxins, has been postulated in the pathogenesis of asthma and allergic airway inflammation. The present study was undertaken to investigate the role of mannan-binding lectin (MBL), an initiator of the lectin pathway of complement, in asthma and allergic rhinitis. MBL levels and MBL-induced complement activity were determined in 19 patients of bronchial asthma with allergic rhinitis and 20 unrelated, age-matched controls of Indian origin. MBL levels and activity were correlated with percent eosinophilia and percent predicted FEV1 values of the patients. Association of single nucleotide polymorphisms (SNPs) in exon 1 and intron 1 of the MBL with the disease, clinical markers, MBL levels and MBL-induced complement activity was analysed using standard statistical tools. Significantly higher MBL levels and activity were observed in patients of bronchial asthma with allergic rhinitis as compared to the controls. We identified five SNPs, of which two, A816G in exon 1 and G1011A in intron 1 of the MBL, were novel. SNP G1011A was significantly associated with the disease ( P =  0.0024, OR = 5.8696, 95% CI: 1.7316 < OR < 19.8963). Individuals with 'A' allele at position 1011 showed increased MBL levels, activity and disease severity. Our results suggest that 'A' allele at position 1011 leading to high MBL levels and complement activity may be contributing to the severity of bronchial asthma and allergic airway inflammation.  相似文献   

17.
The possibility of simultaneous measurement of the classical pathway (CP), mannan-binding lectin (MBL)--lectin pathway (LP) and alternative pathway (AP) of complement activation by the recently developed Wielisa method allowed us to investigate the in vivo significance of the C1-inhibitor (C1INH) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured by standard laboratory methods. MBL-2 genotypes were determined by polymerase chain reaction. Besides the complement alterations (low CP and C1INH activity, low C4-, C1INH concentrations), which characterize HAE, the level of MASP-2 was also lower (P = 0.0001) in patients compared with controls. Depressed LP activity was found in patients compared with controls (P = 0.0008) in homozygous carriers of the normal MBL genotype (A/A), but not in carriers of variant genotypes (A/O, O/O). Activity of CP correlated with LP in patients (Spearman's r = 0.64; P < 0.0001), but no significant correlation was found in the control group and no correlation with AP was observed. In contrast, the activity of CP and AP correlated (Spearman's r = 0.47; P < 0.0001) in healthy controls, but there was no significant correlation in the HAE patients. We conclude that the activation of LP might also occur in subjects with C1INH deficiency, which is reflected by the low MASP-2 and C4 levels.  相似文献   

18.
In recent years, a 'new' pathway for complement activation mediated by the mannose-binding lectin (MBL) has been described as a key mechanism for the mammalian acute phase response to infection. This complement activation pathway is initiated by a non-self recognition step: the binding of a humoral C-type lectin [mannose-binding lectin (MBL)] to microbial surfaces bearing 'foreign' carbohydrate determinants. The recognition factor, MBL, is associated with a serine protease [MBL-associated serine protease (MASP)] which, upon MBL binding to the microbial ligand, activates the complement component C3, leading to either (a) phagocytosis of the opsonized target via the complement receptor, or (b) humoral cell killing via assembly of the membrane attack complex. Galectins (formerly known as S-type lectins) modulate activity of the complement receptor 3 (CR3), the macrophage membrane receptor for complement components C3b and iC3b, downstream products of the MBL pathway which are covalently bound to 'target cells. Galectins also mediate macrophage- and dendrocyte-adhesion to lymphocytes activated by signaling through another C-type lectin, the L-selectin, leading to immunoglobulin-mediated responses. Thus, the functional interplay of MBL, galectins and L-selectin in the acute phase response neutralizes the microbial challenge, and lead to further adaptive immunity. Although the observation of various components of the lectin pathway in different invertebrate species demonstrates the high conservation and ancient roots of the components of innate immunity, there has previously been no evidence supporting the possibility that the integral lectin-mediated complement activation pathway is present in invertebrates. We now have evidence for the coexistence of homologs of all the pathway's key components (MBL, MASP, C3, and galectin) in the protochordate Clavelina picta, suggesting the lectin-mediated pathway of complement activation preceded the immunoglobulin pathway in evolution. Therefore, despite being 'new' to the textbooks, experimental evidence indicates that this pathway is ancient, and has been conserved intact throughout its evolution.  相似文献   

19.
Degn SE  Thiel S  Jensenius JC 《Immunobiology》2007,212(4-5):301-311
The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP is the most recently discovered, and least characterized. The CP and the LP are generally viewed as working through the generation of the C3 convertase, C4bC2b, and are here referred to as the "standard" pathways. In addition to the standard CP and LP, so-called bypass pathways have also been reported, allowing C3 activation in the absence of components otherwise believed critical. The classical bypass pathways are dependent on C1 and components of the AP. A recent study has shown the existence also of a lectin bypass pathway dependent on mannan-binding lectin (MBL) and AP components. The emerging picture of the complement system is more that of a small "scale-free" network where C3 acts as the main hub, than that of three linear pathways converging in a common terminal pathway.  相似文献   

20.
The ficolins are a family of innate pattern recognition molecules that are known to bind acetylated compounds and activate complement through the association of mannose binding lectin (MBL)/ficolin-associated serine proteases (MASPs). Their importance has more recently become appreciated, as they have been shown to play a role in a variety of disease processes from infection to autoimmunity. While studying ficolin-2-mediated complement deposition on Streptococcus pneumoniae, we found that sera depleted of C1q or other complement components were also codepleted of ficolin-2 but not ficolin-1, ficolin-3, or MBL. MBL present in C1q-depleted sera was able to mediate complement deposition on Saccharomyces cerevisiae, suggesting the presence of MASPs. We found that complement was activated on pneumococci in C1q-depleted serum only after opsonization with exogenous recombinant ficolin-2 (rFicolin-2). Also, no complement deposition was observed in C1q-depleted serum when pneumococci were opsonized with rFicolin-2 mutated at its lysine-57 residue, where MASPs are known to associate. Thus, these depleted sera are a unique tool to study ficolin-2-mediated complement pathways; however, one should be aware that ficolin-2 is absent from complement component-depleted sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号