首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The heterogeneous catalytic ammoxidation of methyl aromatics and methyl hetero aromatics is a preferred method for the synthesis of aromatic and hetero aromatic nitriles. The resulting nitriles are valuable intermediates for the production of dyestuffs, pesticides, pharmaceuticals and other chemical products. Usually, the ammoxidation is carried out using V-containing oxides (e.g. V/Ti, V/Sn, V/Mo) promoted by further transition metals as catalysts. However, we have shown recently that defined vanadium phosphates (VPO) revealed an excellent ammoxidation performance. The ammoxidation of toluene was used as model reaction. An intense characterisation of some VPO catalysts under pre-treatment and working conditions by the use of various in situ-methods has thrown more light in formation and stability of the used VPO solids as well as the effect of different reactants (ammonia, toluene) on VPO surface and bulk properties.  相似文献   

2.
Structure-Activity/Selectivity Correlation of Oxidation Catalysts Various reactive forms of oxygen are active in the selective oxygen functionalization of olefins and aromatic compounds. These forms are different on different crystal faces of transition metal oxides as shown by their different cation-oxygen bond lengths. Therefore, face specifity of transition metal oxides as catalysts can be expected for the selective oxidation of hydrocarbons. Furthermore, the reactivity of the framework oxygen in the transition metal oxides for selective oxygen functionalization of hydrocarbons is dependent on the nature of the catalytic cycle (one- or two-electron-processes). Therefore, structure sensitivity of oxidation catalysts on the selectivity of transition metal oxides as oxidation catalysts is possible. Starting from this concept the following phenomena of the activity/selectivity relations are discussed for the most important industrial oxidation catalysts:
  • —ensemble effects on the selectivity of supported Ag catalysts for the oxidation of ethylene to ethylenoxide.
  • —face specifity of multicomponent Bi/Mo-oxide catalysts in the selective oxidation of propylene to acrolein and in the ammoxidation of propylene.
  • —structure sensitivity of V2O5-containing catalysts in the oxidation of aromatic compounds.
  相似文献   

3.
乔建超  王建平  盛清涛  申峻  凌开成 《化工进展》2012,31(8):1717-1720,1740
综述了国内外由煤制取芳烃化合物的三种思路:一是通过将煤直接进行液化获取,或者先将煤液化再从产物中获得芳烃化合物;二是先对煤进行溶剂抽提,然后对产物分类加工制取芳烃化合物;三是将煤进行氧化处理来获得高价值的芳烃化合物。分析了由煤制取芳烃化合物的所面临的产物分离困难、污染环境等问题,并指出了今后需要在分离工艺和催化剂以及如何实现煤的定向转化等方面进行重点研究。  相似文献   

4.
A route for directional conversion of bio‐oil into phenol by means of coupling the catalytic cracking of the bio‐oil with the hydroxylation of the bio‐oil‐based benzene‐rich aromatics is proposed. High selectivity for phenol in the resulting organic liquid was achieved, with an almost complete conversion of the bio‐oil. Co‐cracking of the bio‐oil with methanol over a Zn‐modified zeolite significantly enhanced the yields of aromatics and decreased the deactivation of the catalyst during the catalytic cracking of the bio‐oil. The phenol yield depended on the metal oxide catalysts, the temperature, and the reaction time during hydroxylation of the benzene‐rich aromatics. The reaction pathway of converting bio‐oil into phenol was elucidated based on the products identified and the characterization of the catalysts.  相似文献   

5.
Semi-empirical relationships between the ‘optical basicity’ Λ (so-called after Duffy) of solid oxides and the ‘thermodynamic’ selectivity in mild and total oxidation of hydrocarbons have recently been set up. They can be used to determine the optimum acidity of a solid catalyst or to account for its observed selectivity in a given reaction. The oxidic MxOz catalysts were ranked by means of the electron-donor power of oxygen which is represented by the optical basicity Λ. The difference of ionization potential I of molecules when the reactant becomes the product, which represents the variation of electron-donor power during the reaction, was used to rank reactions. Plotting ΔI against Λ for each ‘reaction/selective catalyst’ couple results in straight lines, the equation of which depends on the chemical nature of reactant (alkane and alkyl-aromatics, alkenes and aromatics, alcohols) and on the deepness of oxidation (ammoxidation, mild oxidation, total oxidation). The correlations are used to discuss the behaviour of V- and Mo-based, simple and multicomponent oxide catalysts, in the mild oxidation of C2 and C3 hydrocarbons.  相似文献   

6.
烯烃和芳香烃通过氧酰化反应直接制备羧酸酯具有简单、直接和高效的特点。甲苯通过氧酰化反应制备苯甲醇醋酸酯是该反应的重要应用之一,反应产物苯甲醇醋酸酯和苯甲醇醋酸酯水解生成的苯甲醇是重要的化工原料,工艺路线绿色环保。对甲苯氧酰化反应机理、催化剂组成和载体对催化剂活性的影响、工艺条件的优化以及催化剂失活及再生等方面的研究进展进行综述,现有的甲苯氧酰化催化剂活性较高并可通过再生循环使用,降低了催化剂应用成本。随着苯甲醇醋酸酯、苯甲醇以及苯甲醛等需求的增大和环保要求提高,甲苯氧酰化工艺工业应用前景广阔。  相似文献   

7.
Selective oxidation reactions like the oxyfunctionalization of alkanes, hydroxylation of aromatics and sulfoxidation of thioethers have been carried out with dilute hydrogen peroxide over titanium and vanadium metallosilicate molecular sieves with MEL topology, viz., TS-2 and VS-2. Though both the catalysts possess similar activities, substantial differences in the product distribution are observed. The oxyfunctionalization of the primary carbon atoms of the alkanes and the oxidation of the methyl substituents of the aromatic hydrocarbons distinguish VS-2 from TS-2. Both the catalysts are found to be equally active in the hydroxylation of phenol, though they possess different activities in different solvents. In general, the oxidations are deeper over VS-2 than on TS-2.  相似文献   

8.
The conversion of biomass compounds to aromatics by thermal decomposition in the presence of catalysts was investigated using a pyroprobe analytical pyrolyzer. The first step in this process is the thermal decomposition of the biomass to smaller oxygenates that then enter the catalysts pores where they are converted to CO, CO2, water, coke and volatile aromatics. The desired reaction is the conversion of biomass into aromatics, CO2 and water with the undesired products being coke and water. Both the reaction conditions and catalyst properties are critical in maximizing the desired product selectivity. High heating rates and high catalyst to feed ratio favor aromatic production over coke formation. Aromatics with carbon yields in excess of 30 molar carbon% were obtained from glucose, xylitol, cellobiose, and cellulose with ZSM-5 (Si/Al = 60) at the optimal reactor conditions. The aromatic yield for all the products was similar suggesting that all of these biomass-derived oxygenates go through a common intermediate. At lower catalyst to feed ratios volatile oxygenates are formed including furan type compounds, acetic acid and hydroxyacetaldehyde. The product selectivity is dependent on both the size of the catalyst pores and the nature of the active sites. Five catalysts were tested including ZSM-5, silicalite, beta, Y-zeolite and silica–alumina. ZSM-5 had the highest aromatic yields (30% carbon yield) and the least amount of coke. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
BACKGROUND: The main purpose of the naphtha reforming process is to obtain high octane naphtha, aromatic compounds and hydrogen. The catalysts are bifunctional in nature, having both acid and metal sites. The metal function is supplied by metal particles (Pt with other promoters like Re, Ge, Sn, etc.) deposited on the support. The influence of the addition of Pb to Pt‐Re/Al2O3 naphtha reforming catalysts was studied in this work. The catalysts were prepared by co‐impregnation and they were characterized by means of temperature programmed reduction, thermal programmed desorption of pyridine and several test reactions such as cyclohexane dehydrogenation, cyclopentane hydrogenolysis and n‐heptane reforming. RESULTS: It was found that Pb interacts strongly with the (Pt‐Re) active phase producing decay in the metal function activity. Hydrogenolysis is more affected than dehydrogenation. Part of the Pb is deposited over the support decreasing the acidity and the strength of the most acidic sites. CONCLUSION: The n‐heptane reforming reaction shows that Pb modifies the stability and selectivity of the Pt‐Re catalysts. Small Pb additions increase the stability and greatly improve the selectivity to C7 isomers and aromatics while they decrease the formation of low value products such as methane and gases. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Ga/ZSM-5 is an effective catalyst for the conversion of dilute (3%) ethylene-in-methane reactant streams into aromatic hydrocarbons at 500–550°C. A Ga loading as low as 0.5 wt% is sufficient to obtain maximum yields of aromatic products. At 520°C, an ethylene conversion of 93%, with an aromatics selectivity of 81%, was obtained over a 5 wt% Ga/ZSM-5 catalyst. The conversion of ethylene into aromatics over Ga/ZSM-5 catalysts involves a complex sequence of oligomerization, isomerization, cracking, and cyclization reactions that occur on Brønsted acid zeolites in the zeolite. The role of the gallium, which exists as both Ga3+ at zeolitic exchange sites and as Ga2O3 within the channels and on the external surface of the calcined catalyst, is to promote dehydrogenation of the acid-catalyzed oligomerization and cyclization products.  相似文献   

11.
Direct hydroxylation of aromatic compounds was effectively achieved by using a newly developed Pd membrane reactor in which the Pd membrane is thin enough (ca. 1 μm) to allow permeation of hydrogen below 500 K. In this reactor, the active oxygen species is formed on the surface of Pd via the reaction between oxygen and permeated hydrogen from opposite sides of the membrane. Hydroxylation occurs on the surface of Pd via reaction of the aromatic compound and active oxygen. In the reaction of benzene at a reaction temperature of 423 K, the reactor achieved a benzene conversion of 15% and a phenol selectivity of 95%. An increase in reaction temperature, however, caused simultaneous hydrogenation. In the reaction of methyl benzoate, the reaction products were not only methyl salicylate, which is a hydroxylation product, but also numerous hydrogenation and oxidation compounds via side reactions. These side reactions were related to the gas balance between oxygen and hydrogen; oxygen-rich conditions caused complete oxidation, whereas oxygen-poor conditions (i.e., high amount of permeated hydrogen) induced high hydrogenation activity.  相似文献   

12.
The electrochemical oxidation of aqueous wastes polluted with 4‐chlororesorcinol has been studied on boron‐doped diamond electrodes on acidic medium. The voltammetric results showed that in the potential region where the supporting electrolyte is stable, reactions occur, resulting in the loss of activity due to electrode fouling. Galvanostatic electrolysis study showed that the oxidation of these wastes in single‐compartment electrochemical flow cell with boron doped diamond anodes deal to the complete mineralization of the organics but is no indication of electrode fouling. Resorcinol, 1,2,4‐trihydroxybenzene, benzoquinone, maleic, fumaric, and oxalic acids have been detected as soluble organics and chlorides (Cl?) and hypochlorites (ClO?) as mineral products during the electrolysis of 4‐chlororesorcinol. The electrochemical oxidation of 4‐chlororesorcinol consists of a sequence of steps: Release of Cl and/or hydroxylation of the aromatic ring; formation of quinonic compounds; oxidative opening of aromatic ring to form carboxylic acids; and oxidation of carboxylic acids to carbon dioxide. Both, direct oxidation at boron doped diamond surface and mediated oxidation by powerful oxidants electrogenerated from electrolyte oxidation at anode surface are involved in these stages.  相似文献   

13.
A novel process for the direct ammoxidation of propane over steam-activated Fe-silicalite at 723–823 K is reported. Yields of acrylonitrile (ACN) and acetonitrile (AcCN) below 5% were obtained using N2O or O2 as the oxidant. Co-feeding N2O and O2 boosts the performance of Fe-silicalite compared to the individual oxidants, leading to AcCN yields of 14% and ACN yields of 11% (propane conversions of 40% and products selectivity of 25–30%). The beneficial effect of O2 on the propane ammoxidation with N2O contrasts with other N2O-mediated selective oxidations over iron-containing zeolites (e.g. hydroxylation of benzene and oxidative dehydrogenation of propane), where a small amount of O2 in the feed dramatically reduces the selectivity to the desired product. It is shown that the productivity of ACN and especially AcCN, expressed as mol product h−1 kgcat−1, is significantly higher over Fe-silicalite than over active propane ammoxidation catalysts reported in the literature. Our results open new perspectives to improve the performance of alkane ammoxidation catalysts.  相似文献   

14.
Zeolites for fine chemicals production   总被引:1,自引:0,他引:1  
The use of zeolitic catalysts in organic syntheses is reviewed with emphasis on recent developments in the areas of acid and redox catalysis and on their relationship with environmental issues. Examples of acid‐catalyzed reactions are chosen from the acylation, alkylation, hydroxyalkylation of aromatic and heterocyclic compounds and from rearrangement reactions. The epoxidation of olefins, the hydroxylation of arenes and the oxidation of O‐, S‐ and N‐functionalities with hydrogen peroxide on Ti‐zeolites illustrate catalyzed oxidations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The selective transformation of light alkanes to aromatics that are more valuable and versatile feedstocks for the chemical industry is one of the major challenges of catalytic chemistry. The complexity of the aromatization chemistry makes it difficult to unravel reaction mechanisms and, mechanistic information is largely developed from observed product distributions. This article reviews the current mechanistic understanding for the conversion of propane to aromatic compounds over HZSM‐5 and Ga/HZSM‐5 catalysts based on experimental as well as theoretical studies.

Following a general discussion of acidity and confinement effects in these systems, this review focuses on understanding specific reactions occurring on Brønsted acid sites in HZSM‐5. Mechanistic details available from Density Functional Theory (DFT) calculations, as well as kinetic modeling efforts for various complex hydrocarbon systems are critically reviewed. A detailed, tabulated review of the literature compares the catalytic performance of gallium modified ZSM‐5 catalysts and subsequently the promotional effect of gallium as an additive is critically discussed in terms of the nature of the active sites, as well as the new reaction pathways introduced by gallium addition.  相似文献   

16.
Anna Gitkis 《Electrochimica acta》2010,55(20):5854-5859
The in situ and environmentally friendly thiocyanation (no use of toxic oxidizing agents) electrochemical thiocyanation of aromatic compounds involving various derivatives of anisole and aniline to afford aromatic thiocyanates have been studied in organic acidic media. The initial electrochemical step involves anodic oxidation of thiocyanate anion to its radical (SCN), followed by dimerization to thiocyanogen (SCN)2. The latter is polarized by the acidic solvent and attacks the aromatic nucleus of the substrate to afford the corresponding thiocyanate derivative. The sole thiocyanate products obtained in each case shows high regio-selectivity (no ortho isomer was observed) for the monosubstituted aromatics and high isomer-selectivity (no isothiocyanate isomer was detected) for both mono- and disubstituted aromatics.  相似文献   

17.
G. Centi 《Catalysis Letters》1993,22(1-2):53-66
Some aspects of the reactivity of vanadyl pyrophosphate catalysts inn-butane andn-pentane oxidation and propane ammoxidation are discussed in order to illustrate differences and peculiarities of the catalysts for the selective oxidation of alkanes in comparison to the catalysts for the selective oxidation of alkenes. The formation of alkenes as reaction intermediates, the catalytic and mechanistic differences in alkane and alkene conversion, their different effects in changing the active surface configuration, the relationship between surface concentration of adspecies and catalytic behavior, and the problem of the surface isolation of the active intermediates are discussed. Some brief economic considerations about the advantages of the various processes of alkane oxidation as compared to alkene or aromatic oxidation are also given.  相似文献   

18.
19.
Shiju Thomas 《Fuel》2007,86(16):2581-2595
In order to investigate the effects of oxygen on the distribution of thermal decomposition products from complex solid fuels, pyrolysis and fuel-rich oxidation experiments have been performed in an isothermal laminar-flow reactor, using the model fuel catechol (ortho-dihydroxybenzene), a phenol-type compound representative of structural entities in coal, wood, and biomass. The gas-phase catechol pyrolysis experiments are conducted at a residence time of 0.3 s, over a temperature range of 500-1000 °C, and at oxygen ratios ranging from 0 (pure pyrolysis) to 0.92 (near stoichiometric oxidation). The pyrolysis products are analyzed by nondispersive infrared analysis and by gas chromatography with flame-ionization and mass spectrometric detection. In addition to an abundance of polycyclic aromatic hydrocarbons, catechol pyrolysis and fuel-rich oxidation produce a range of C1-C5 light hydrocarbons as well as single-ring aromatics. Quantification of the products reveals that the major products are CO, acetylene, 1,3-butadiene, phenol, benzene, vinylacetylene, ethylene, methane, cyclopentadiene, styrene, and phenylacetylene; minor products are ethane, propyne, propadiene, propylene and toluene. Under oxidative conditions, CO2 is also produced. At temperatures <850 °C, increases in oxygen concentration bring about increases in catechol conversion and yields of C1-C5 and single-ring aromatic products—in accordance with increased rates of pyrolytic reactions, due to the enhanced free-radical pool. At temperatures >850 °C, catechol conversion is complete, and increases in oxygen bring about drastic decreases in the yields of virtually all hydrocarbon products, as oxidative destruction reactions dominate. Reactions responsible for the formation of the C1-C5 and single-ring aromatic products from catechol, under pyrolytic and oxidative conditions, are discussed.  相似文献   

20.
The direct catalytic conversion of alkanes into aromatics has found potentially important industrial applications. Initially only alkanes with 6 and more carbon atoms in the chain were concerned. Supported platinum catalysts were found active for the aromatization of alkanes; the drawbacks of these catalysts were their deactivation with time on stream and the existence of simultaneous parallel reactions. Much discussion has been published on the aromatization of C6+ alkanes. A bifunctional mechanism which involves both the metal and the acid sites of the support and a monofunctional mechanism involving only the metallic sites operate over, respectively, Pt supported on acidic support and Pt supported on nonacidic support. In the present review the mechanisms proposed for the aromatization of alkanes are described. Over monofunctional Pt catalysts two possible mechanisms prevail: 1,6 ring closure on the Pt surface involving primary and secondary C-H bond rupture, followed by dehydrogenation of the cycloalkanes into aromatics (1,5 ring closure to a lesser extent also contributes to aromatic production); or dehydrogenation of the alkanes into olefins, dienes, and trienes followed by thermal ring closure. Zeolites were found most suitable as support for preparing catalysts more active and more selective in the alkane aromatization. In addition catalysts based on noble metals supported on zeolite appeared more resistant against deactivation by coke. In this review the aromatization of hexane, heptane, and octane over Pt-zeolite catalysts is discussed in detail. Comparisons between different zeolite structures and different dehydrogenation sites are given. In particular a critical analysis of the results and interpretation concerning Pt-KL catalysts strongly suggests that the exceptional high selectivity towards aromatization of n-hexane exhibited by Pt-KL could not be explained by only the nest or constraint effect exerted by the channel dimension and morphology, not by only the terminal cracking properties, not by only the partial electron transfer from the zeolite support to the Pt particles, and not by only the Pt particle size. Zeolite structure also affects the aromatic product distribution, in particular when the alkane contains more than 7 carbon atoms. It is shown how Pt on medium-pore zeolites such as In-ZSM-5, silicalites will favor the aromatization of C8 alkane isomers into ethylbenzene-styrene with respect to other C8 aromatics. Aromatization of light alkanes, C2-C5, requires the increase of the hydrocarbon chain length up to 6 carbon atoms and higher, followed by cyclization reaction. Recently new processes to convert C2-C5 alkanes into aromatics have been disclosed, M2-forming from Mobil, Cyclar from BP-UOP, and Aroforming from IFP-Saluted. In general these processes use bifunctional catalysts possessing a dehydrogenating and an acid function. The catalysts consist of a metal ion or metal oxide supported on a microporous acid solid. In this review we analyze the results concerning mainly platinum supported on pentasil-type zeolite. It is shown that althoug Pt has better dehydrogenating properties as compared with gallium and zinc, the efficiency of catalysts based on Pt-ZSM-5 for light alkane aromatization is less because undersirable reactions such as hydrogenolysis and ethene (olefins) hydrogenation occur on the platinum surface, resulting in the production of unreactive alkanes, CH2, C2H6. These drawbacks could be partially suppressed by alloying Pt and by increasing the reaction temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号