首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper presents extended analyses of β UMa (A0mA1 IV‐V), α Dra (A0 III), π Dra (A2 IIIs), and κ Cep (B9 III) which have previously been studied in this series. α Dra is a metal‐poor star while κ Cep has solar abundances. Both β UMa and π Dra are Am stars. Whenever possible, more accurate and precise gf values replace older values. High S/N (200+) and high dispersion Dominion Astrophysical Observatory spectrograms to the red of previously obtained spectra supplement the observations. The derived rotational velocities are 45, 25, 26, and 23 km s–1, respectively. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. The results of the extended and the previous analyses are in good agreement. Thus in the past decade a significant improvement in the system of gf values has not been achieved although for many lines there have been changes. The use of additional regions has increased the quality of some results (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We determine abundances from the absorption spectrum of the magnetic Herbig Ae star HD 190073 (V1295 Aql). The observations are primarily from HARPS spectra obtained at a single epoch. We accept arguments that the presence of numerous emission lines does not vitiate a classical abundance analysis, though it likely reduces the achievable accuracy. Most abundances are closely solar, but several elements show departures of a factor of two to three, as an earlier study has also shown. We present quantitative measurements of more than 60 emission lines, peak intensities, equivalent widths, and FWHM's. The latter range from over 200 km s–1(Hα, He D3) down to 10–20 km s–1(forbidden lines). Metallic emission lines have intermediate widths. We eschew modeling, and content ourselves with a presentation of the observations a successful model must explain. Low‐excitation features such as the Na I D‐lines and [O I] appear with He I D3, suggesting proximate regions with widely differing Te and Ne as found in the solar chromosphere. The [O I] and [Ca II] lines show sharp, violet‐shifted features. Additionally, [Fe II] lines appear tobe weakly present in emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The technique of Doppler tomography has been influential in the study of mass transfer in Algol‐type interacting binaries. The Algols contain a hot blue dwarf star with a magnetically‐active late‐type companion. In the close Algols, the gas stream flows directly into the photosphere of the blue mass‐gaining star because it does not have enough room to avoid impact with that star. Doppler tomograms of the Algols have been produced from over 2500 time‐resolved spectra at wavelengths corresponding to Hα, Hβ, He I (6678 Å), Si II (6371 Å) and Si IV (1394 ° A). These tomograms display images of accretion structures that include a gas stream, accretion annulus, accretion disk, stream‐star impact region, and occasionally a source of chromospheric emission associated with the cool, mass‐losing companion. Some Algol systems alternate between streamlike and disk‐like states, and provide direct evidence of active mass transfer within the Algols. This work produced the very first images of the gas stream for the entire class of interacting binaries, and demonstrated that the Algols are far more active than formerly believed, with variability on time scales of weeks to months. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We show that in accreting ultra low‐mass stars and brown dwarfs, the CaII λ 8662 emission line flux correlates remarkably well with the mass accretion rate ( ), just as it does in higher mass classical T Tauri stars (CTTs). A straightforward measurement of the CaII flux thus provides an easier determination technique than detailed modeling of the Hα emission line profile (except at the very lowest accretion rates, where CaII does not appear to be in emission for ultra low‐mass objects, and Hα modeling is required). Using optical high‐resolution spectra, we infer from CaII emission for young ultra low‐mass objects down to nearly the deuterium‐burning (planetary‐mass) limit. Our results, in combination with previous determinations of in CTTs, illustrate that the accretion rate declines steeply with mass, roughly as ∝ M*2 (albeit with considerable scatter). A similar relationship has been suggested by previous studies; we extend it down to nearly the planetary regime. The physical reason for this phenomenon is not yet clear; we discuss various possible mechanisms. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Two Wolf-Rayet members of the cluster NGC 6231 are studied spectrophotometrically. HD 151932, a suspected variable, shows variations in the emission line flux as well as continuum magnitude measurements. An attempt is made to understand this variation as due to the asymmetric atmospheric structure. The other, HD 152270, a (WC7 + O) binary, shows variation of emission line flux for C III and C IV lines only. This variation is studied as a possible phenomenon of atmospheric eclipses.  相似文献   

7.
We present high‐quality spectra of the majority of stars that have been classified as Oe and find that their published spectral types are generally too early, most likely due to infilling of He I lines. As a matter of fact, all stars classified as Oe actually fall inside the range O9–B0 with the important exception of HD 155806 (O7.5 III) and perhaps HD 39680 (difficult to classify, but likely O8.5V). Observations of a sample of objects with published spectral types in the O9–B0 range previously classified as peculiar or emission‐line stars fail to reveal any new Oe star with spectral type earlier than O9.5. Most objects classified as peculiar in “classical” literature show signs of binarity in our spectra, but no spectral anomalies. We conclude that there is likely a real decline in the fraction of Be stars for spectral types earlier than B0, not due to observational bias. The few Oe stars with spectral types earlier than O9.5 deserve detailed investigation in order to provide constraints on the physical reasons of the Be phenomenon. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We use minimal empirical modelling techniques to interpret recent (2006–2007) photometry and spectroscopy of AB Dor. We compare, in particular, broadband (B and V) maculation effects with emission features in high‐resolution Ca II K‐line spectroscopy. We also compare emission effects in the Ca II Kand Hα lines observed at different rotational phases. We refer to a broader multiwavelength campaign, of which these optical data were a part, involving X‐ray and microwave observations to be published later. The broadband light curves are characterized by one outstanding macula, whereas the emission lines suggest 4 possible main chromospheric activity sites (‘faculae’). These appear at a similar latitude and with comparable size to the main umbra, but there are significant displacements in longitude. However, one strong facular concentration near phase zero may have a physical relationship to the main macula. The derived longitudes of these features would have been affected by differential rotation operating over the several months between the spectroscopic and photometric observations, but the difference of at least ∼30° between facula and umbra appears too great to allow their coincidence. The possibility of a large bipolar surface structure is considered, keeping in mind the bipolar character of solar activity centres: the activity of rapidly rotating cool stars being generally compared with that of the Sun, scaled up by a few orders of magnitude. Observed microwave activity may link to this same main photospheric and chromospheric centre picked up by the optical analysis. Characterization of macular and facular contributions in stellar activity sites would be improved with a closer timing of observations and higher signal to noise ratios in emission line data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
As a result of feedback from massive stars, via their intense winds and/or supernova explosions, massive star‐forming regions are entirely filled with hot, X‐ray emitting plasmas, which escape into the ambient ISM. As shown recently by Townsley et al. for several “extreme” cases (Carina, M17, NGC 3576, NGC 3603, 30 Dor), by way of large Chandra ACIS mosaics, extra, non‐thermal emission lines are present on top of the standard lines emitted by hot plasmas. Some of them are very close to lines characteristic of charge‐exchange reactions between the hot plasma and the cold surrounding material, suggesting that this mechanism operates on large spatial scales (several 10 pc) in star‐forming regions in general. The connection with starburst galaxies is briefly mentioned, and it is pointed out that supernovae interacting with molecular clouds may also provide a good environment to look for charge exchange processes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Hitherto unstudied objects from Stephenson's list of Hα emission line objects at high galactic latitude were observed spectroscopically to prove their nature. 9 out of 11 objects show Hα in emission. Spectroscopy combined with photometric information indicates most of them being classical Be stars, while one object is a Post‐AGB star and one a T‐Tauri star. The classification of two objects, which are showing Hα in emission, is unclear. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
X-rays from massive OB stars: thermal emission from radiative shocks   总被引:1,自引:0,他引:1  
Chandra grating spectra of a sample of 15 massive OB stars were analysed under the basic assumption that the X-ray emission is produced in an ensemble of shocks formed in the winds driven by these objects. Shocks develop either as a result of radiation-driven instabilities or due to confinement of the wind by a relatively strong magnetic field, and since they are radiative, a simple model of their X-ray emission was developed that allows a direct comparison with observations. According to our model, the shock structures (clumps, complete or fractional shells) eventually become 'cold' clouds in the X-ray sky of the star. As a result, it is expected that for large covering factors of the hot clumps, there is a high probability for X-ray absorption by the 'cold' clouds, resulting in blueshifted spectral lines. Our analysis has revealed that such a correlation indeed exists for the considered sample of OB stars. As to the temperature characteristics of the X-ray emission plasma, the studied OB stars fall in two groups: (i) one with plasma temperature limited to ∼0.1–0.4 keV and (ii) the other with X-rays produced in plasmas at considerably higher temperatures. We argue that the two groups correspond to different mechanisms for the origin of X-rays: in radiation-driven instability shocks and in magnetically confined wind shocks, respectively.  相似文献   

12.
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary γ2 Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray-emitting plasma (∼4–40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with a mean FWHM of  1240 ± 30 km s−1  . Calculations of line profiles based on hydrodynamical simulations of the wind–wind collision predict lines that are blueshifted by a few hundred  km s−1  . The lack of any observed shift in the lines may be evidence of a large shock-cone opening half-angle (>85°), and we suggest this may be evidence of sudden radiative braking. From the R and G ratios measured from He-like forbidden-intercombination-resonance triplets we find evidence that the Mg  xi emission originates from hotter gas closer to the O star than the Si  xiii emission, which suggests that non-equilibrium ionization may be present.  相似文献   

13.
In dense hot star winds, the infrared and radio continua are dominated by free‐free opacity and recombination emission line spectra. In the case of a spherically symmetric outflow that is isothermal and expanding at constant radial speed, the radiative transfer for the continuum emission from a dense wind is analytic. Even the emission profile shape for a recombination line can be derived. Key to these derivations is that the opacity scales with only the square of the density. These results are well‐known. Here an extension of the derivation is developed that also allows for line blends and the inclusion of an additional power‐law dependence beyond just the density dependence. The additional power‐law is promoted as a representation of a radius dependent clumping factor. It is shown that differences in the line widths and equivalent widths of the emission lines depend on the steepness of the clumping power‐law. Assuming relative level populations in LTE in the upper levels of He II, an illustrative application of the model to Spitzer/IRS spectral data of the carbon‐rich star WR 90 is given (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

16.
We present recent results from optical photometric and spectroscopic observations of the pre‐main sequence star V1184 Tau (CB 34V). The star is associated with the Bok globule CB 34 and was considered as a FUOR candidate in previous studies. Our photometric data obtained from October 2000 to April 2003 show that the stellar brightness varies with an amplitude of about 0.m 5 (I ), but from August 2003 the photometric behavior of the star has changed dramatically. Three deep brightness minima (ΔI ∼ 4m.2) were observed during the past two years. The analysis of available photometric data suggests that V1184 Tau shows two types of variability produced (1) by rotation of large cool spotted surface and (2) by occultation from circumstellar clouds of dust or from features of a circumstellar disk. The behavior of the VI index indicates that the star becomes redder towards minimum light, but from a certain turning point (V ∼ 18m.2) it gets bluer and is fading further. Five medium dispersion optical spectra of V1184 Tau were obtained in the period 2001–2004. Signi.cant changes in the profile and strength of the emission lines in the spectrum of V1184 Tau were found. During minimum light the equivalent width of the Hα emission line increases from 4 Å to 9 Å. The [O I] lines (λλ 6003, 6363 Å) are also seen in emission while the sodium doublet keeps its absorption strength and equivalent width. The possibility to reconstruct the historical light curve of V1184 Tau using photographical plate archives is brie.y discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present new spectral (FPI and long‐slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub‐parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ∼ 100 km s–1) supersonic motions. [O III]λ 5007 emission is found to be multi‐component and differs from lowerexcitation [S II]λ 6717 line both in spatial and kinematical properties. Indirect evidence for very low characteristic densities of the gas (n ∼ 0.1 cm–3) is found. We propose radiative (possibly incomplete) shock waves in low‐density, moderately high metallicity gas as the most probable candidate for the power source of the optical filament. Apparent nitrogen overabundance is better understood if the location of W50 in the Galaxy is taken into account (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
X-ray line-profile analysis has proved to be the most direct diagnostic of the kinematics and spatial distribution of the very hot plasma around O stars. The Doppler-broadened line profiles provide information about the velocity distribution of the hot plasma, while the wavelength-dependent attenuation across a line profile provides information about the absorption to the hot plasma, thus providing a strong constraint on its physical location. In this paper, we apply several analysis techniques to the emission lines in the Chandra High Energy Transmission Grating Spectrometer (HETGS) spectrum of the late-O supergiant ζ Ori (O9.7 Ib), including the fitting of a simple line-profile model. We show that there is distinct evidence for blueshifts and profile asymmetry, as well as broadening in the X-ray emission lines of ζ Ori. These are the observational hallmarks of a wind-shock X-ray source, and the results for ζ Ori are very similar to those for the earlier O star, ζ Pup, which we have previously shown to be well fit by the same wind-shock line-profile model. The more subtle effects on the line-profile morphologies in ζ Ori, as compared to ζ Pup, are consistent with the somewhat lower density wind in this later O supergiant. In both stars, the wind optical depths required to explain the mildly asymmetric X-ray line profiles imply reductions in the effective opacity of nearly an order of magnitude, which may be explained by some combination of mass-loss rate reduction and large-scale clumping, with its associated porosity-based effects on radiation transfer. In the context of the recent reanalysis of the helium-like line intensity ratios in both ζ Ori and ζ Pup, and also in light of recent work questioning the published mass-loss rates in OB stars, these new results indicate that the X-ray emission from ζ Ori can be understood within the framework of the standard wind-shock scenario for hot stars.  相似文献   

19.
The star ζ Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of ζ Oph with FORS 1 mounted on the 8‐m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field 〈Bzall = 141 ± 45 G, confirming the magnetic nature of this star. We review the X‐ray properties of ζ Oph with the aim to understand whether the X‐ray emission of ζ Oph is dominated by magnetic or by wind instability processes (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
New spectrophotometric observations of the Wolf-Rayet system HD 50896 are presented and interpreted in terms of its binary nature. The lines of N V, N IV and C IV show moderate variations, which can be explained using a binary model with a compact companion. He n λ4686 appears to arise from a larger region compared to other lines. The distortion caused by the wind can partly explain its flux variations. The emission fluxes of He I lines are generally constant indicating their non-participation in the orbit. The results are compared with other Wolf-Rayet binaries (V444 Cyg and CQ Cep) and the evolutionary status is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号