首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.  相似文献   

2.
Acinetobacter baumannii is a serious nosocomial pathogen with multiple drug resistance (MDR), the control of which has become challenging due to the currently used antibiotics. Our main objective in this study is to determine the antibacterial and antibiofilm activities of the antimicrobial peptide, Octominin, against MDR A. baumannii and derive its possible modes of actions. Octominin showed significant bactericidal effects at a low minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of 5 and 10 µg/mL, respectively. Time-kill kinetic analysis and bacterial viability tests revealed that Octominin showed a concentration-dependent antibacterial activity. Field-emission scanning electron microscopy (FE-SEM) analysis revealed that Octominin treatment altered the morphology and membrane structure of A. baumannii. Propidium iodide (PI) and reactive oxygen species (ROS) generation assays showed that Octominin increased the membrane permeability and ROS generation in A. baumannii, thereby causing bacterial cell death. Further, a lipopolysaccharides (LPS) binding assay showed an Octominin concentration-dependent LPS neutralization ability. Biofilm formation inhibition and eradication assays further revealed that Octominin inhibited biofilm formation and showed a high biofilm eradication activity against A. baumannii. Furthermore, up to a concentration of 100 µg/mL, Octominin caused no hemolysis and cell viability changes in mammalian cells. An in vivo study in zebrafish showed that the Octominin-treated group had a significantly higher relative percentage survival (54.1%) than the untreated group (16.6%). Additionally, a reduced bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octominin in vivo. Collectively, these data suggest that Octominin exhibits significant antibacterial and antibiofilm activities against the multidrug-resistant A. baumannii, and this AMP can be developed further as a potent AMP for the control of antibiotic resistance.  相似文献   

3.
4.
Acinetobacter baumannii is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of A. baumannii to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated. We found that the antibacterial effect of riboflavin-based antimicrobial photodynamic therapy depends on the ability of photoactivated riboflavin to generate intracellular reactive oxygen species but does not depend on the concentration of riboflavin and pre-incubation time before irradiation. Moreover, our results suggest a clear interconnection between the inactivation efficiency of chlorophyllin-based antimicrobial photodynamic therapy and the sensitivity of A. baumannii biofilms to used light. In summary, all the analyzed results suggest that riboflavin-based antimicrobial photodynamic therapy and chlorophyllin-based antimicrobial photodynamic therapy have the potential to be applied as an antibacterial treatment against A. baumannii biofilms or as a preventive measure against biofilm formation.  相似文献   

5.
Novel chatechol/hydroxamate siderophores (named “fimsbactins”) were identified in Acinetobacter baumannii ATCC 17978 and Acinetobacter baylyi ADP1. The major compound, fimsbactin A, was isolated from low‐iron cultures of A. baylyi ADP1, and its chemical structure was elucidated by mass spectrometry, and detailed 1H, 13C and 15N NMR spectroscopy. From inverse feeding experiments following HPLC‐MS analysis, the structures of five additional derivatives were elucidated. The gene cluster encoding the fimsbactin synthetase (fbs) was identified in both genomes, and mutants in fbs genes in A. baylyi were analyzed, thus allowing prediction of the fimsbactin biosynthesis pathway.  相似文献   

6.
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.  相似文献   

7.
The widespread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern in clinical settings worldwide. It is urgent to develop new therapeutic agents against this pathogen. This study aimed to evaluate the therapeutic potentials of compound 62520, which has been previously identified as an inhibitor of the ompA promoter activity of A. baumannii, against CRAB isolates, both in vitro and in vivo. Compound 62520 was found to inhibit the ompA expression and biofilm formation in A. baumannii ATCC 17978 at sub-inhibitory concentrations in a dose-dependent manner. These inhibitory properties were also observed in clinical CRAB isolates belonging to sequence type (ST) 191. Additionally, compound 62520 exhibited a bacteriostatic activity against clinical clonal complex (CC) 208 CRAB isolates, including ST191, and ESKAPE pathogens. This bacteriostatic activity was not different between STs of CRAB isolates. Bacterial clearance was observed in mice infected with bioimaging A. baumannii strain 24 h after treatment with compound 62520. Compound 62520 was shown to significantly increase the survival rates of both immunocompetent and neutropenic mice infected with A. baumannii ATCC 17978. This compound also increased the survival rates of mice infected with clinical CRAB isolate. These results suggest that compound 62520 is a promising scaffold to develop a novel therapeutic agent against CRAB infections.  相似文献   

8.
9.
Antimicrobial peptides (AMPs) are naturally occurring compounds which possess a rapid killing mechanism and low resistance potential. Consequently, they are being viewed as potential alternatives to traditional antibiotics. One of the major factors limiting further development of AMPs is off-target toxicity. Enhancements to antimicrobial peptides which can maximise antimicrobial activity whilst reducing mammalian cytotoxicity would make these peptides more attractive as future pharmaceuticals. We have previously characterised Smp24, an AMP derived from the venom of the scorpion Scorpio maurus palmatus. This study sought to better understand the relationship between the structure, function and bacterial selectivity of this peptide by performing single amino acid substitutions. The antimicrobial, haemolytic and cytotoxic activity of modified Smp24 peptides was determined. The results of these investigations were compared with the activity of native Smp24 to determine which modifications produced enhanced therapeutic indices. The structure–function relationship of Smp24 was investigated by performing N-terminal, mid-chain and C-terminal amino acid substitutions and determining the effect that they had on the antimicrobial and cytotoxic activity of the peptide. Increased charge at the N-, mid- and C-termini of the peptide resulted in increased antimicrobial activity. Increased hydrophobicity at the N-terminus resulted in reduced haemolysis and cytotoxicity. Reduced antimicrobial, haemolytic and cytotoxic activity was observed by increased hydrophobicity at the mid-chain. Functional improvements have been made to modified peptides when compared with native Smp24, which has produced peptides with enhanced therapeutic indices.  相似文献   

10.
Pathogenic superbugs are the root cause of untreatable complex infections with limited or no treatment options. These infections are becoming more common as clinical antibiotics have lost their effectiveness over time. Therefore, the development of novel antibacterial agents is urgently needed to counter these microbes. Antimicrobial peptides (AMPs) are a viable treatment option due to their bactericidal potency against multiple microbial classes. AMPs are naturally selected physiological microbicidal agents that are found in all forms of organisms. In the present study, we developed two tilapia piscidin 2 (TP2)-based AMPs for antimicrobial application. Unlike the parent peptide, the redesigned peptides showed significant antimicrobial activity against multidrug-resistant bacterial species. These peptides also showed minimal cytotoxicity. In addition, they were significantly active in the presence of physiological salts, 50% human serum and elevated temperature. The designed peptides also showed synergistic activity when combined with clinical antibiotics. The current approach demonstrates a fruitful strategy for developing potential AMPs for antimicrobial application. Such AMPs have potential for progression to further trials and drug development investigations.  相似文献   

11.
Antimicrobial peptides (AMPs) have become a key solution for controlling multi-drug-resistant (MDR) pathogens, and the nanoencapsulation of AMPs has been used as a strategy to overcome challenges, such as poor stability, adverse interactions, and toxicity. In previous studies, we have shown the potent antimicrobial activity of Octominin against Candida albicans and Acinetobacter baumannii. This study is focused on the nanoencapsulation of Octominin with chitosan (CS) and carboxymethyl chitosan (CMC) as a drug delivery system using the ionotropic gelation technique. Octominin-encapsulated CS nanoparticles (Octominin-CNPs) had an average diameter and zeta potential of 372.80 ± 2.31 nm and +51.23 ± 0.38 mV, respectively, while encapsulation efficiency and loading capacity were 96.49 and 40.20%, respectively. Furthermore, Octominin-CNPs showed an initial rapid and later sustained biphasic release profile, and up to 88.26 ± 3.26% of the total Octominin release until 96 h. Transmission electron microscopy data showed the irregular shape of the Octominin-CNPs with aggregations. In vitro and in vivo toxicity of Octominin-CNPs was significantly lower than the Octominin at higher concentrations. The antifungal and antibacterial activities of Octominin-CNPs were slightly higher than those of Octominin in both the time-kill kinetic and microbial viability assays against C. albicans and A. baumannii, respectively. Mode of action assessments of Octominin-CNPs revealed that morphological alterations, cell membrane permeability alterations, and reactive oxygen species generation were slightly higher than those of Octominin at the tested concentrations against both C. albicans and A. baumannii. In antibiofilm activity assays, Octominin-CNPs showed slightly higher biofilm inhibition and biofilm eradication activities compared to that of Octominin. In conclusion, Octominin was successfully encapsulated into CS, and Octominin-CNPs showed lower toxicity and greater antimicrobial activity against C. albicans and A. baumannii compared to Octominin.  相似文献   

12.
Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad-spectrum activities. Lynronne-1 is a promising AMP identified in the rumen microbiome that shows broad-spectrum activity against pathogens such as methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne-1 using solution NMR spectroscopy and identified a 13-residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne-1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane-lysis activities in vitro and in vivo, and yielded a new AMP with 4-fold improved activity against A. baumannii and 32-fold improved activity against S. aureus.  相似文献   

13.
Acinetobacter baumannii is a nosocomial pathogen of urgent concern for public health due to rising rates of multidrug and pandrug resistance. In the context of environmental cues such as growth in human serum, A. baumannii is known to display adaptive efflux, in which a multitude of efflux-associated genes are upregulated, resulting in efflux-mediated drug tolerance in strains that are otherwise susceptible to antibiotic therapy. Previously, we identified a sulfonamide-containing scaffold molecule (ABEPI1) that reversed serum-associated antibiotic tolerance in A. baumannii. Herein, we present structure-activity relationship studies on 29 newly synthesized analogues. These molecules were characterized for their ability to potentiate multiple antibiotics in serum, reduce serum-associated ethidium bromide efflux and depolarize bacterial cell membranes. In addition, they were assessed for toxicity to mammalian cells. Collectively, these molecules may represent promising potential adjuvants for use in combination with new and existing antibiotics to treat A. baumannii bacterial infections.  相似文献   

14.
15.
New antimicrobial agents are urgently needed to address the increasing emergence and dissemination of multidrug-resistant bacteria. In the study, a chemically synthesized truncated peptide containing 22-amino acids derived from a C-type lectin homolog SpCTL6 of Scylla paramamosain was screened and found to exhibit broad-spectrum antimicrobial activity, indicating that it is an antimicrobial peptide (AMP), named Sp-LECin. Sp-LECin possessed the basic characteristics of most cationic AMPs, such as positive charge (+4) and a relatively high hydrophobicity (45%). After treatment with Sp-LECin, the disruption of microbial membrane integrity and even leakage of cellular contents was observed by scanning electron microscopy (SEM). In addition, Sp-LECin could bind lipopolysaccharide (LPS), increase the outer and inner membrane permeability and induce reactive oxygen species (ROS) production, ultimately leading to the death of Pseudomonas aeruginosa. Furthermore, Sp-LECin exhibited potent anti-biofilm activity against P. aeruginosa during both biofilm formation and maturation. Notably, Sp-LECin had no obvious cytotoxicity and could greatly improve the survival of P. aeruginosa-infected zebrafish, by approximately 40% over the control group after 72 h of treatment. This study indicated that Sp-LECin is a promising antibacterial agent with the potential to be used against devastating global pathogen infections such as P. aeruginosa.  相似文献   

16.
Acinetobacter baumannii AYE does not produce acinetobactin but grows under iron limitation. Accordingly, analyses of AYE iron‐restricted culture supernatants resulted in the isolation of two fractions, which contained only hydroxamates and showed siderophore activity. Structural analyses identified baumannoferrin A and baumannoferrin B, which differ only by a double bond. These siderophores are composed of citrate, 1,3‐diaminopropane, 2,4‐diaminobutyrate, decenoic acid, and α‐ketoglutarate. Analysis of the AYE genome showed the presence of a 12‐gene cluster coding for proteins similar to those involved in the production and utilization of the hydroxamate siderophores acinetoferrin and achromobactin. As A. baumannii AYE does not produce acinetobactin and harbors only one gene cluster encoding the production and utilization of a siderophore, this strain's growth under iron limitation depends on baumannoferrin, a novel hydroxamate that could play a role in its virulence.  相似文献   

17.
18.
采用Na-芴甲氧羰基(FMOC)作为α-氨基的保护基,以逐个延伸的固相合成法合成了血管活性肠肽,以最小抑菌浓度(MIC)评价其体外抗菌活性。高效液相色谱和质谱分析表明,所合成的血管活性肠肽的纯度为95.2%,相对分子质量为3326.5。血管活性肠肽对几种革兰氏阳性菌和革兰氏阴性菌有不同程度的抑制活性,其中对E.coli和P.aeruginosa的抑制效果最好。  相似文献   

19.
Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.  相似文献   

20.
潘婕  高振珅  叶增民 《广东化工》2011,38(12):58-59
抗菌肽是一种广泛存于自然界中具有广谱抗菌作用的小分子多肽。文章首先对抗菌肽的结构进行分类、从肽链长度、α-螺旋结构、疏水性、两亲性和净电荷5个方面分析了分子结构对活性的影响、并对抗菌肽的分子设计进行了综述,对其发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号