首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past few years, taxanes have emerged as a new class of anticancer drugs. Docetaxel (DTX) the prototype of this class has been approved for the treatment of broad range of cancers. However, to date the commercial preparation of DTX (Taxotere®) is accompanying adverse side effects, intolerance, and poor solubility, which can be overcome by encapsulating them using solid lipid nanoparticles (SLNs). SLNs represent versatile delivery system of drugs with newer forms such as polymer–solid lipid hybrid, surface modified and long circulating nanoparticles bringing forth improved prospects for cancer chemotherapy. In this review, the authors have discussed the current uses of various SLNs formulations of DTX with key emphasis on controlled and site‐specific drug delivery along with enhanced antitumour activity elucidated via in vitro and in vivo studies. Furthermore, the review article highlights few approaches that can be used in combination with existing DTX‐loaded SLNs to supplement DTX drug delivery.Inspec keywords: nanoparticles, nanomedicine, drug delivery systems, biomedical materials, cancer, reviews, tumoursOther keywords: docetaxel‐loaded solid lipid nanoparticles, drug delivery system, taxanes, anticancer drugs, Taxotere, SLN encapsulation, polymer‐solid lipid hybrid, surface modified nanoparticles, long circulating nanoparticles, chemotherapy, review  相似文献   

2.
L‐theanine is present in tea as a unique, free, non‐protein amino acid. Due to various beneficial effects on brain activity, it is widely used as a nutraceutical. After consumption, it is rapidly absorbed and metabolised followed by excretion through urine. Therefore, the authors developed an L‐theanine delivery system by encapsulating into polymeric nanoparticles to release it slowly and make it available for a longer period of time. Poly(D, L‐lactic acid) nanoparticle (PLANP) was fabricated by the double emulsion method and L‐theanine was encapsulated into it (PLANP‐T). Spherical nanoparticles with a hydrodynamic diameter of 247 and 278 nm and surface charge of −14.5 and −25.7 mV for PLANP and PLANP‐T, respectively, were fabricated. The Fourier transform infrared spectroscopic data indicated encapsulation of L‐theanine into PLANP. The PLANP showed high L‐theanine encapsulation capacity (71.65%) with a sustained release character. The maximum release (66.3%) of L‐theanine was recorded in pH 7.3 at 48 h. The release kinetics followed the Higuchi model and the release mechanism was determined as super case‐II transport (erosion). This slow release will make it available to the target tissue for a longer period of time (sustain release effect) and will also avoid immediate metabolism and clearance from the circulation.Inspec keywords: nanomedicine, pH, polymers, nanofabrication, emulsions, biomedical materials, drug delivery systems, nanoparticles, Fourier transform infrared spectraOther keywords: brain activity, L‐theanine delivery system, polymeric nanoparticles, double emulsion method, spherical nanoparticles, surface charge, L‐theanine encapsulation capacity, poly(D, L‐lactic acid) nanoparticles, nonprotein amino acid, urine, hydrodynamic diameter, Fourier transform infrared spectroscopy, time 48.0 hour, voltage ‐25.7 mV, voltage ‐14.5 mV, size 278.0 nm, size 247.0 nm, target tissue, Higuchi model, pH  相似文献   

3.
The aim of this study was to generate a new type of nanoparticles made of quaternized chitosan (QCS) and poly(aspartic acid) via the ionotropic gelation technique and to evaluate their potential for the association and delivery of ammonium glycyrrhizinate (GLA). The effects of the pH value of nanoparticles, QCS molecular weight (Mw) and poly(aspartic acid) concentration on GLA encapsulation were studied. Suitably pH value of nanoparticles, moderate QCS MW, optimal concentration ratio of poly(aspartic acid) and QCS favored higher GLA encapsulation efficiency. The release of GLA from nanoparticles was pH-dependent. Fast release occurred in 0.1 M phosphate buffer solution (PBS, pH = 7.4), while the release was slow in 0.1 M HCl (pH = 1.2). The results showed that the new QCS/poly(aspartic acid) nanoparticles have a promising potential in GLA delivery system.  相似文献   

4.
In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.Inspec keywords: encapsulation, cancer, scanning electron microscopy, nanoparticles, surfactants, drugs, nanofabrication, antibacterial activity, biomedical materials, drug delivery systems, polymers, nanomedicine, Fourier transform infrared spectra, precipitation (physical chemistry), atomic force microscopy, particle sizeOther keywords: surfactant‐mediated synthesis, polyhydroxybutyrate nanoparticles, sustained drug delivery, surfactant concentrations, PHB nanoparticles, sustained curcumin delivery, drug encapsulation efficiency, anticancer activity, in vitro drug release, nanoprecipitation method, Tween 80, FTIR spectra, SEM, AFM, particle sizes, antibacterial activity, AO‐PI staining, mitochondrial depolarisation assay  相似文献   

5.
Drug delivery is one of the most important challenges in the domain of health. Non‐toxic and biocompatible carriers are provided by human serum albumin nano‐capsule (HSA/NC) for drug delivery applications. In this study, HSA, with high loadings of drug‐modified cobalt ferrite (CoFe2 O4) magnetic nanoparticle (CoFe2 O4 /MNPs) was fabricated for epirubicin anticancer drug delivery. In the initial step, CoFe2 O4 /MNPs was synthesised via co‐precipitation technique and characterised by X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy and map analysis. Furthermore, CoFe2 O4 /MNPs and epirubicin were loaded into HSA/NC and utilised as a novel system against breast cancer cell line (MCF‐7). IC50 for free epirubicin, unloaded CoFe2 O4 /MNPs/HSA/NC, CoFe2 O4 /MNPs and epirubicin‐loaded CoFe2 O4 /MNPs/HSA/NC were 7.7, 2400, 840 and 430 μg/ml, respectively. The results obtained revealed high cytotoxicity effect of epirubicin‐loaded CoFe2 O4 /MNPs on breast cancer cell line.Inspec keywords: drug delivery systems, biomedical materials, nanoparticles, cobalt compounds, ferrites, nanomedicine, proteins, molecular biophysics, drugs, magnetic particles, nanomagnetics, nanofabrication, precipitation (physical chemistry), X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, cancer, cellular biophysics, toxicology, magnetic hysteresisOther keywords: HSA, high‐efficiency carrier, epirubicin anticancer drug delivery, human serum albumin nanocapsule, drug‐modified cobalt ferrite magnetic nanoparticle, coprecipitation technique, X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy, map analysis, breast cancer cell line, cytotoxicity effect, CoFe2 O4   相似文献   

6.
Small molecule‐based amphiphiles self‐assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen‐polyethylene glycol (N‐PEG), a small molecule‐derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1 H, 13 C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier‐transform infrared spectroscopy (FTIR) confirmed the formation of N‐PEG and dynamic light scattering (DLS) revealed the formation of nano‐sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar‐structured N‐PEG was demonstrated by lipase‐mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well‐known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N‐PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.Inspec keywords: cancer, biodegradable materials, cellular biophysics, encapsulation, biomedical materials, drugs, nanofabrication, drug delivery systems, nanomedicine, self‐assembly, nanoparticles, transmission electron microscopy, colloids, molecular biophysics, light scattering, hydrophobicity, biochemistry, enzymes, core‐shell nanostructures, nanocomposites, proton magnetic resonance, Fourier transform infrared spectra, mass spectroscopic chemical analysisOther keywords: hydrophobic drug carrier, nanosized structures, transmission electron microscope analysis, doxorubicin, N‐PEG micelles, core/shell nanoassembly, amphiphilic naproxen‐polyethylene glycol, drug delivery system, small molecule‐based amphiphiles self‐assemble, small molecule‐derived amphiphile, 1 H NMR, 13 C NMR, MS, FTIR, dynamic light scattering, aggregation behaviour, biodegradability aspect, lipase‐mediated degradation studies, encapsulation efficiency, cancerous cells  相似文献   

7.
The cadmium(II) complexes of thiourea and N-alkylthioureas (with alkyl group methyl or ethyl) have been used as precursors for the preparation of TOPO-capped CdS nanoparticles. The precursors are air-stable, easy to prepare and inexpensive. These compounds decompose cleanly to give good quality crystalline materials. The nanoparticles obtained showed quantum confinement effects in their optical spectra and close-to-band-edge emission in luminescence experiments. The broad diffraction patterns and the diffuse rings observed in the SAED patterns are typical of nanometric particles. The TEM images showed agglomerates of needle-like plates of particles. The presence of a strong phosphorus peak in the EDAX spectra is indicative of TOPO bound to the surface.  相似文献   

8.
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti‐epidermal growth factor receptor monoclonal antibody (anti‐EGFR‐SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm−1 relates to Fe–O, which verified the formation of the anti‐EGFR‐Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm‐sized for nanoparticles and the anti‐EGFR‐SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non‐specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti‐EGFR‐SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.Inspec keywords: toxicology, biomedical MRI, lung, magnetic particles, biomedical materials, nanofabrication, nanomagnetics, transmission electron microscopy, nanomedicine, superparamagnetism, nanoparticles, iron compounds, proteins, cellular biophysics, molecular biophysics, cancer, tumours, Fourier transform infrared spectraOther keywords: MR imaging contrast agent, LLC1, superparamagnetic iron oxide nanoparticles, Lewis lung carcinoma cells, ex vivo conditions, cell viability, antiepidermal growth factor receptor antibody‐based iron oxide nanoparticles, antiEGFR‐SPION, lung cancer cell detection, antiepidermal growth factor receptor monoclonal antibody, cytotoxicity effects, C57BL‐6 mice, antiEGFR‐Mab, FTIR spectra, TEM, spherical shape, incubation, nanoprobe concentrations, systemic injection, Fe tumour uptake, image signal intensity, in vivo conditions, time 24.0 hour, Fe3 O4   相似文献   

9.
New drug delivery system (ZnO@CMS) of the redox and pH dual‐stimuli responsive based on colloidal mesoporous silica nanoparticles (CMS) has been designed, in which zinc oxide quantum dots (ZnO QDs) as a capping agent was conjugated on the surface of nanoparticles by amide bonds. The release behaviour of doxorubicin (DOX) as the model drug from ZnO@CMS (ZnO@CMS‐DOX) indicated the redox and pH dual‐stimuli responsive properties due to the acidic dissolution of ZnO QDs and cleavage of the disulphide bonds. The haemolysis and bovine serum albumin adsorption assays showed that the modification of ZnO QDs on the mesoporous silica nanoparticles modified by mercapto groups (CMS‐SH)(ZnO@CMS) had better biocompatibility compared to CMS‐SH. The cell viability and cellular uptake tests revealed that the ZnO@CMS might achieve the antitumour effect on cancer cells due to the cytotoxicity of ZnO QDs. Therefore, ZnO@CMS might be potential nanocarriers of the drug delivery system in cancer therapy. The in vivo evaluation of ZnO@CMS would be carried out in future work.Inspec keywords: biochemistry, nanomedicine, cellular biophysics, pH, toxicology, tumours, semiconductor quantum dots, proteins, colloids, II‐VI semiconductors, mesoporous materials, silicon compounds, oxidation, cancer, drug delivery systems, zinc compounds, adsorption, molecular biophysics, nanomagnetics, drugs, biomedical materials, nanofabrication, nanoparticles, nanoporous materialsOther keywords: cancer therapy, drug delivery system, amide bonds, haemolysis, bovine serum albumin adsorption assays, mercapto groups, cancer cells, cytotoxicity, antitumour effect, redox/pH dual stimuli‐responsive zinc oxide quantum dots‐gated colloidal mesoporous silica nanoparticles, ZnO, SiO2   相似文献   

10.
The purpose of this study was to design a targeted anti‐cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross‐linking method using Zn2+ ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl as cross‐linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier‐transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non‐targeted ones were studied on MCF‐7 cells which overexpress luteinizing hormone‐releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF‐7 cells compared to free DOX and non‐targeted NPs.Inspec keywords: nanoparticles, polymer blends, cancer, cellular biophysics, drug delivery systems, drugs, biomedical materials, zinc, positive ions, Fourier transform infrared spectra, nanomedicine, proteinsOther keywords: luteinizing hormone‐releasing hormone, poly(methyl vinyl ether maleic acid), doxorubicin delivery, MCF‐7 breast cancer cell, anticancer drug delivery system, doxorubicin‐loaded PVM‐MA nanoparticle, ionic cross‐linking method, zinc ion, doxorubicin‐polymer ratio effect, zinc‐polymer ratio effect, particle size, zeta potential, loading efficiency, release efficiency, chemical coating, tiptorelin‐polyallylamin conjugation, PVM‐MA nanoparticle surface, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl, cross‐linking agent, Bradford assay, Fourier transform infrared spectroscopy, cytotoxicity, LHRH receptor, SKOV3 cell, Thiazolyl blue tetrazolium bromide assay, conjugation efficiency, time 72 h, Zn2+   相似文献   

11.
Poly(vinyl alcohol) (PVA) hydrogels prepared by a freeze-thawing procedure were evaluated as matrices for the release of water-insoluble drugs such as dexamethasone. As it is impossible to directly entrap a lipophilic drug into a hydrophilic matrix, a novel mechanism has been designed based on producing biodegradable nanoparticles loaded with the drug, that could then be entrapped into the hydrogels. Nanoparticles were prepared by a solvent evaporation technique using a biodegradable copolymer of poly(lactic acid)-poly(glycolic acid) (PLGA). The effects of several processing parameters on particle properties were investigated. The drug release from free nanoparticles was compared to that from the nanoparticles entrapped into the PVA matrices. It was observed that the release profile of the drug is not significantly affected by the PVA matrix. A correlation was found between the amount of drug released and the PVA concentration in the hydrogels: the percentage of drug released, as a function of time, decreased by increasing PVA concentration, indicating that PVA concentration can be used as a tool in modulating the release of the drug.  相似文献   

12.
Nanoparticles of CdS and PbS were prepared by a novel method in which a sparingly soluble salt of the metal is brought into contact with the preparation solution mixture, without mixing, to introduce Cd2+ or Pb2+ ion into the medium at infinitesimal doses. The aqueous solution mixture contained n-heptane; thioacetamide, as sulphide ion precursor; cetyltrimethylammonium bromide (CTAB), as capping agent; and n-butanol, as co-surfactant. At the solid/solution interface CTAB-capped nanometal sulphide is formed through a metathesis reaction in extreme dilute medium. UV-visible, FTIR, and X-ray diffraction spectroscopy, as well as transmission electron microscopy were used to characterise the nanoparticles. The results showed that in solution, the diameters of the prepared CdS and PbS are 2.67 and 1.87 nm, respectively. In crystalline form, the corresponding diameters are 3.8–6.6 nm, and 6.88–13.9 nm, respectively. The crystalline structure of CdS is cubic or hexagonal, while that of PbS is face-centred cubic. The FTIR studies proved that CTAB acted as a capping agent of the investigated nanoparticles.  相似文献   

13.
The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self‐assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H‐NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of −9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 μg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 μM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co‐polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.Inspec keywords: nanoparticles, cellular biophysics, drugs, biomedical materials, drug delivery systems, colloids, hydrophilicity, pH, transmission electron microscopy, particle size, cancer, casting, toxicology, electrokinetic effects, polymer blends, proton magnetic resonance, nanomedicine, self‐assembly, nanofabrication, Fourier transform infrared spectraOther keywords: PC3 cells, chemotherapeutic drugs, prostate cancer treatment, polymer composite micelle, chemical conjugation, proton nuclear magnetic resonance, cell cytotoxicity, prepared nanomicelles, drug loading efficiency, drug release, critical micelle concentration, cell viability, cytotoxic effects, flutamideloaded micelles, flutamide delivery, polyacrylamide‐punicic acid conjugate‐based micelles, PAMPA copolymeric nanomicelles, biopolymeric micelle, PAM‐punicic acid copolymer copolymeric micelles, hydrophilic shell, self‐assembly, film casting, ultrasonication method, Fourier transform infrared spectra, transmission electron microscopy, particle size, polydisperity index, zeta potential, pH, blank nanocarriers, time 10.0 hour  相似文献   

14.
The molecular targeted drug ATRA demands a suitable carrier that delivers to the cancer site due to its poor bioavailability and drug resistance. ATRA, being a lipid with carboxylic acid, has been nano‐formulated as a cationic lipo‐ATRA with DOTAP:cholesterol:ATRA (5:4:1) and its pH‐responsive release, intracellular drug accumulation, and anticancer effect on human lung cancer (A549) cell line analysed. The analysis of the physicochemical characteristics of the developed lipo‐ATRA (0.8 µmol) revealed that the size of 231 ± 2.35 d.nm had a zeta potential of 6.4 ± 1.19 and an encapsulation efficiency of 93.7 ± 3.6%. The ATRA release from lipo‐ATRA in vitro was significantly (p ≤ 0.05) higher at acidic pH 6 compared to pH 7.5. The intracellular uptake of ATRA into lipo‐ATRA‐treated A549 cells was seven‐fold higher (0.007 ± 0.001 mg/ml) while only three‐fold uptake was observed in free ATRA treatment (0.003 ± 0.002 mg/ml). The lipo‐ATRA treatment caused a highly significant (p ≤ 0.001) decrease in percent cell viability at 48 h when compared with the free ATRA treatment. Overall, the results proved that the developed lipo‐ATRA has suitable physicochemical properties with enhanced ATRA release at acidic pH, while maintaining stability at physiologic pH and temperature. This resulted in an increased ATRA uptake by lung cancer cells with enhanced treatment efficiency. Hence, it is concluded that DOTAP lipo‐ATRA is a suitable carrier for ATRA delivery to solid cancer cells.  相似文献   

15.
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio‐extract‐assisted methods. Characterisation techniques such as X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X‐ray were used to confirm the synthesis. Although chemical and bio‐assisted methods are suitable choices for NPs synthesis, the bio‐assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, semiconductor growth, antibacterial activity, X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, Fourier transform infrared spectra, nanobiotechnologyOther keywords: chemical methods, bio‐assisted methods, Silybum marianum in vitro plantlets methods, Silybum marianum in vitro callus extract methods, green chemistry, zinc oxide nanoparticles, sodium hydroxide, zinc acetate, X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, bio‐assisted green assembly, antibacterial activity, Klebsiella pneumonia, Bacillus subtilis, ZnO  相似文献   

16.
The feasibility of transdermal controlled delivery system of 17beta-estradiol was investigated by conducting in vitro release studies. Several new 17beta-estradiol unilaminate adhesive devices capable of releasing 17beta-estradiol in a controlled fashion over a 24-h, 36-h, 96-h, 104-h, 168-h, and 216-h period have been developed using acrylic resins (Eudragits E100, RSPO, and RLPO) as adhesive and rate-controlling polymers. The in vitro release profiles of 17beta-estradiol from various TDS unilaminate devices were characterized in a new developed dissolution tester vessel (total volume 200 ml), using a new paddle. The release of drug from different formulations was measured by a sensitive high-performance liquid chromatographic (HPLC) method. The release of drug from all prepared adhesive devices seems to obey zero-order kinetics (r > 0.98). The effect of two different plasticizers (acetyltriburyl citrate [ATBC] and triethyl citrate [TEC]) on the release patterns of 17beta-estradiol from TDS formulations was studied, and they were almost identical. The effect of two different release modifiers, propylene glycol (PG) and myristic acid (MA), on the release pattern of 17beta-estradiol from prepared unilaminate devices was evaluated. It was shown that the use of these release modifiers significantly increased the release of 17beta-estradiol from a TDS unilaminate patch. Furthermore, these data clearly demonstrated that the acrylic resins are suitable polymers for the preparation of 17beta-estradiol TDS adhesive devices.  相似文献   

17.
In the current study, SiO2/Fe3O4 core–shell nanoparticles functionalized with TiO2, using a simple method and application for removal of Cd(II), Hg(II) and Ni(II) ions from aqueous solution. The structure of the resulting product was confirmed by X-ray diffraction spectrometry, transmission electron microscopy (TEM), pHpzc and Brunauer, Emmett and Teller methods. The average diameter of TiO2/SiO2/Fe3O4 nanoparticles according to TEM was obtained around 48 nm. In batch tests, the effects of pH, initial metal concentration, contact time and temperature were studied. Adsorption of metal ions was studied from both kinetics and equilibrium point of view. Maximum adsorption capacity of Cd(II), Hg(II) and Ni(II) on TiO2/SiO2/Fe3O4 nanoparticles was 670.9, 745.6 and 563.0 mg g?1, respectively. Adsorption–desorption results showed that the reusability of nanoparticles was encouraging. This adsorbent was successfully applied to removal Cd(II), Hg(II) and Ni(II) ions in real samples including tap water, electronic wastewater and medical wastewater.  相似文献   

18.
In this work, Simvastatin (SIM) loaded porous poly(lactic-co-glycolic acid) (PLGA) microspheres were fabricated using the W/O/W1/W2 double emulsion and solvent evaporation method. The optimal conditions for fabricating porous PLGA microspheres were determined to be 20% distilled water (v/v), 10% PLGA (m/v), and a 4:1 ratio of internal polyvinyl alcohol (PVA) to dichloromethane (DCM). The pores size distribution of porous PLGA microspheres was varied from 0.01 to 40 μm, while their particle displayed a bimodal size distribution that had two diameter peaks at around 100 μm and 500 μm. The SIM encapsulation efficacy was found to be very high with a yield near 80% and the porous PLGA microspheres showed the excellent biocompatibility. In addition, the drug release profile was found to be significantly different from a temporal basis. Base on the combined results of this study, SIM loaded PLGA microspheres holds great promise for use in biomedical applications, especially in drug delivery system or tissue regeneration.  相似文献   

19.
The occurrence of heavy metal ions in food chain is appearing to be a major problem for mankind. The traces of heavy metals, especially Pb(II) ions present in water bodies remains undetected, untreated, and it remains in the food cycle causing serious health hazards for human and livestock. The consumption of Pb(II) ions may lead to serious medical complications including multiple organ failure which can be fatal. The conventional methods of heavy metal detection are costly, time‐consuming and require laboratory space. There is an immediate need to develop a cost‐effective and portable sensing system which can easily be used by the common man without any technical knowhow. A portable resistive device with miniaturized electronics is developed with microfluidic well and α‐MnO2/GQD nanocomposites as a sensing material for the sensitive detection of Pb(II). α‐MnO2/GQD nanocomposites which can be easily integrated with the miniaturized electronics for real‐time on‐field applications. The proposed sensor exhibited a tremendous potential to be integrated with conventional water purification appliances (household and commercial) to give an indication of safety index for the drinking water. The developed portable sensor required low sample volume (200 µL) and was assessed within the Pb(II) concentration range of 0.001 nM to 1 uM. The Limit of Detection (LoD) and sensitivity was calculated to be 0.81 nM and 1.05 kΩ/nM/mm2, and was validated with the commercial impedance analyser. The shelf‐life of the portable sensor was found to be ∼45 days.  相似文献   

20.
Abstract

Context: Aerosol delivery to animals in preclinical settings has historically been very challenging, requiring the use of techniques, such as intratracheal instillation and dry powder insufflation, that are somewhat invasive, inefficient and not representative of clinical inhalation.

Objective: The objective of this work is to develop a system to deliver dry powder to dogs in an efficient and effective manner for the study of new anti-migraine compounds in development.

Materials and methods: The new device uses a metered aliquot of a dry gas to force dry powder drug from a pre-filled HPMC capsule into an AeroChamber® spacer for subsequent inhalation by the animal.

Results: The delivery of two invesigational migraine drugs via the new device was assessed in vitro using abbreviated Andersen cascade impaction and showed the device is capable of generating a reproducible delivered dose of up to ~68% with more than 50% of the dose in the respirable range. In vivo studies have also been performed showing that this device effectively delivered the migraine drugs to spontaneously breathing dogs using a proprietary validated dog inhalation model.

Discussion: Results confirmed that the air pressurized capsule device (APCD) was effective in delivering the APIs to lungs of the animals. The in vivo data verified the advantages of inhaled delivery over oral delivery for this class of drugs and were used to establish the cardiopulmonary and respiratory side effect liability profile for these compounds.

Conclusions: This work has demonstrated the utility of this device for quick and accurate screening of prospective drug candidates, representing a significant improvement in ease of use and reprodicibility over current delivery methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号