首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristic HSLA steels for automotive use are introduced in which both of precipitation and microstructure is controlled to obtain suitable mechanical properties.For outer panels such as fender,the combination of low yield strength,high tensile strength and deep-drawability were realized by controlling the distribution of NbC and precipitation free zone.The other steel,developed for chassis parts such as lower arm,utilizes extremely fine interphase precipitation to obtain high yield strength and excellent hole expansionability.Both steels have contributed to the reduction of weight in car body.  相似文献   

2.
Advanced high‐strength steels offer a great potential for the further development of automobile bodies‐in‐white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash‐relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex‐phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels.  相似文献   

3.
Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.  相似文献   

4.
Two major drivers for the use of newer steels in the automotive industry is fuel efficiency and increased safety performance.Fuel efficiency is mainly a function of weight of steel parts,which in turn,is controlled by gauge and design.Safety is determined by the energy absorbing capacity of the steel used to make the part.All of these factors are incentives for the U.S.automakers to use Advanced High Strength Steels (AHSS) to replace the conventional steels used to manufacture automotive parts in the past.AHSS is a general term used to describe various families of steels.The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure.These steels are characterized by high strength,good ductility,low tensile to yield strength ratio and high bake-hardenability.Another class of AHSS is the multi-phase steel which have a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio.Transformation Induced Plasticity (TRIP) steels is the latest class of AHSS steels finding interest among the U.S.automakers.These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation,so far,among the AHSS in use.High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming.Finally,martensitic steels with very high strengths are also in use for certain parts.The role of Niobium in all of the above families of advanced steels for the automotive industry will be discussed in this paper.  相似文献   

5.
Cyclic indentation was used to evaluate the dynamic deformation on metastable steels, particularly in an austenitic stainless steel, AISI 301LN. In this work, cyclic nanoindentation experiments were carried out and the obtained loading-unloading (or P-h) curves were analyzed in order to get a deeper knowledge on the time-dependent behavior, as well as the main deformation mechanisms. It was found that the cyclic P-h curves present a softening effect due to several repeatable features (pop-in events, ratcheting effect, etc.) mainly related to dynamic deformation. Also, observation by transmission electron microscopy highlighted that dislocation pile-up is the main responsible of the secondary pop-ins produced after certain cycles.  相似文献   

6.
The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials. An erratum to this article can be found at  相似文献   

7.
8.
0 前言 通过Split Hopkinson Bar(SHB:张力和压缩试验系统)试验,研究200~100000s-1范围内高应变速率材料的机械性能. 高应变速率是先进的高强度钢(AHSS)的重要特性之一,这是因为高强度钢大多用于易冲撞部位.Ispat Inland公司已经着手一项使一组AHSS钢产生高应变值的研究项目,其中包括双相钢和TRIP钢.由于对钢的高应变速率试验缺乏经验,而且没有标准的试验方法和可行的试验步骤,为此研究出了试验方法及其数据处理过程.本文对两种主要试验方法--伺服液压试验系统和Split Hopkinson Bar进行了比较,提供数据整理和曲线调整的过程,最后研讨了所试验的AHSS钢的高应变速率性能.  相似文献   

9.
10.
The application of advanced high strength steels in automotive industry has highlighted the need for research into spot weldability of these steels.Using weld lobe diagrams,the spot weldability of DP600 steel was found to be poor with conventional weld schedules.An enhanced weld schedule consisting of two pulses with reduced current on the second pulse gave a substantial increase in the lobe width;the first pulse removed the zinc coating and the second pulse controlled the nugget growth.A data acquisition system was designed to monitor weld expulsion during the weld operation.Of the three possible control strategies proposed,especially with AC welding equipment,the dynamic resistance signal is easily obtained and the least expensive.Expulsion phenomena,microstructural characterization and mechanical properties of spot-welded hot dipped galvanized DP600 steel and interstitial free steel were investigated.Further work on dissimilar welds in DP 600 and HSLA 350 was also conducted with emphasis on tensile and fatigue properties and fracture characteristics.The performance of dissimilar spot welds was different from that of the similar spot welds in each of the HSLA350 and DP600 steels.The DP600 weld properties played a dominating role in the hardness and tensile properties of the dissimilar spot welds.However,the fatigue performance of the dissimilar welds was similar to that of the HSLA welds.Details will be presented at the conference.  相似文献   

11.
12.
13.
In the last decade, the European niobium consumption in automotive strip and sheet has more than tripled. The development of high strength and advanced high strength steel grades for strip and plate products focused upon constantly increasing strength levels combined with excellent fatigue properties as well as formability and weldability. Until now, the high potential of microalloyed steel has not been used to the same extent in forgings and springs. This paper reviews automotive components as transmissions, suspensions and springs highlighting new material solutions for special steels having optimized processing and in‐use properties. Special consideration is given to the metallurgical background as well as to examples for the processing and application of niobium microalloyed steel in forgings and springs from low carbon and higher carbon containing steels. Niobium metallurgy permits the reduction of carbon to meet more stringent end‐user requirements demanding high strength combined with improved toughness, fatigue strength and weldability at a competitive manufacturing cost.  相似文献   

14.
Car bodies are increasingly made with high‐strength steels, for both lightweighting and safety purposes. Steel sheets, made by continuous casting, hot rolling, cold rolling, and continuous heat treating, are used to deep draw the car body parts, which are then joined by resistance spot welding (RSW). Two high‐strength automotive steels, with similar tensile strength, are studied here. The low alloy, dual‐phase steel consist of ferrite and martensite, obtained by an intercritical heat treatment, followed by fast cooling. The innovative, high‐Mn TWIP steel exhibits a promising combination of strength and toughness, arising from the austenitic structure, strengthened by C, and from the twinning induced plasticity effect. Tensile specimens are fatigue tested at room temperature with zero load ratio, both in the as‐fabricated (unnotched) condition and after the RSW of an homologous sheet square. Moreover, pre‐cracked compact tension specimens are tested with load ratio 0.1 to determine the fatigue crack growth behavior. These results are completed with crystallographic, microstructural, tensile, and fractographic examinations, and the influence of the microstructure and of the welding process is discussed.  相似文献   

15.
Industrial processing of low‐alloy Transformation Induced Plasticity (TRIP) steels involves various stages of heat‐treating, such as Intercritical Annealing (IA) and Bainitic Isothermal Treatment (BIT), in order to produce a dispersion of retained austenite (γR) particles and bainite (αB) in a ferritic matrix (α). Retained austenite then transforms to martensite (α′) during forming processes undergone by the steel. In the present work an effort was made to model these stages of processing, i.e. IA, BIT and the γR→α′ strain‐induced transformation. Simulation of heat‐treatment stages was implemented using computational kinetics methods. Investigation of the strain‐induced gMR→α′ transformation kinetics was performed by means of a simple analytical model. Simulation of IA and comparison with available experimental data showed that the amount of austenite (γ) forming during IA reaches the values predicted by thermodynamic equilibrium only at high annealing temperatures (>825°C). It was also observed that kinetic and thermodynamic predictions set a lower and an upper limit, respectively, within which the actual amount of austenite experimentally observed is contained. Results from the simulation of the BIT indicated considerable carbon enrichment, and thus stabilization of γR, in agreement with recent experimental observations. As regards the strain‐induced gMR→α′ transformation, the analytical model employed in the present work was fitted to available experimental results, showing reasonably good adaptation to the kinetic behaviour of the microstructure during plastic deformation.  相似文献   

16.
Metallurgical and Materials Transactions A - Fatigue damage is commonly encountered by operators of Francis type hydraulic turbine runners made of 13Cr-4Ni soft martensitic stainless steel. These...  相似文献   

17.
汽车排气系统用铁素体不锈钢的应用及腐蚀失效评价   总被引:1,自引:1,他引:0  
最近几年,随着对全球环境问题的关注,汽车燃油的经济性和汽车尾气排放的等级化要求不断提高,铁素体不锈钢更多用于汽车排气系统零部件。铁素体不锈钢性能得到了明显改善,使铁素体不锈钢具有低的价格和良好性能,欧美及日本汽车几乎全部使用超纯铁素体不锈钢用于排气系统零部件制造。介绍了汽车排气系统的构成及对各部件常用不锈钢的性能要求、排气系统零部件的主要失效形式和所用不锈钢材料的腐蚀评价方法。  相似文献   

18.
现代多相钢在汽车行业中的应用   总被引:2,自引:0,他引:2  
热轧或冷轧钢板的冷成形是汽车生产的必需工序.抗拉强度大于500MPa的微合金化高强度低合金钢板(HSLA)已广泛应用于汽车生产.然而,双相钢以其十分优异的成形性而同样具有更大的应用价值.此类具有双相或三相显微组织的钢板是采用各种生产工艺路线或热处理工艺以及对应的化学成分的调整而生产的.相变诱导塑性融入双相钢中,进一步提高了钢板的使用性能.生产上述各类钢的最佳工艺是通过铌进行微合金化.铌能细化显微组织,从而提高钢板的机械性能.随着铌加入量的增加,不仅使钢板强度提高,而且可提高延展性,使钢板抗拉强度与延伸率乘积成幂指数增加.因此,具有最佳性能的多相钢也依赖于铌的微合金化.  相似文献   

19.
The phase transformations of high Mn steels during cooling have been characterized in this study. Widmanstätten plates occur in the austenite matrix upon cooling the steels from 1373 K (1100 °C). The Widmanstätten plates are composed of not only the hexagonal close-packed ε-martensite but also the face-centered cubic (FCC) micro-twins. The formation mechanism of the Widmanstätten phases is probably various stacking faults induced from Shockley partial dislocations in the austenite. The ε-martensitic plates, along with the κ-carbides, were observed in a Mn-Al steel at 873 K (600 °C). As most of the FCC matrix has transformed to κ-carbides, the partial dislocations neighboring ε-martensitic plates could not glide. The ε-martensite retained in the transformed matrix is the strongest evidence to support the above mechanism.  相似文献   

20.
The limits of strength and ductility of a medium‐carbon silicon chromium spring steel are investigated for the case of conventional heat treatment including austenitization, quenching and tempering. The effect of phosphorus and austenite deformation prior to quenching was studied by measuring mechanical properties after quenching and tempering and by microstructural investigation. Strong influence of phosphorus on the ductility is observed for the quenched and tempered martensite without prior austenite deformation. The minimum in ductility found after tempering at 350°C is explained by the formation of cementite and grain boundary segregation of phosphorus. Two thermomechanical treatments were tested involving different austenite conditions produced by variation of the deformation temperature. The deformed conditions, recrystallized or work‐hardened, exhibit higher ductility at all tempering temperatures tested. A combined thermomechanical treatment is proposed that provides the highest ductility after tempering at 300°C independent of the phosphorus content. All thermomechanical treatments described in this study refine or eliminate carbide films at prior austenite grain boundaries. It was found possible to increase the tensile strength and the fatigue limit by deformation of austenite prior to quenching while maintaining or increasing the ductility level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号