首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two series of polypropylenes with different molecular weight distribution and tacticity characteristics were injection molded into flexural test specimens by varying cylinder temperature and the effects of the molecular weight distribution and tacticity on the structure and properties of the moldings were studied. Measured propertied were flexural modulus, flexural strength, heat distortion temperature, Izod impact strength, and mold shrinkage and structures studied were crystallinity, the thickness of skin layer, a*‐axis‐oriented component fraction and crystalline orientation functions. The relations between the structures and properties were also studied. It was found that the molecular weight distribution and tacticity characteristics affect the properties mainly through the molecular orientation and crystallinity, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2142–2156, 2002  相似文献   

2.
Several samples of poly(lactic acid) with different molecular weights and tacticity have been prepared, and some PLLA injection moulded specimens have been annealed to promote their crystallization. From the characterization data, poly(L -lactide) showed more interesting mechanical properties than poly(D, L -lactide), and its behavior significantly improves with crystallization. In fact, annealed specimens possess higher values of tensional and flexural modulus of elasticity, Izod impact strength, and heat resistance. The plateau region of flexural strength as a function of molecular weights appears around Mv = 35,000 for PDLLA and amorphous PLLA and at higher molecular weight, around Mv = 55,000, for crystalline PLLA. The study of temperature effect shows that at 56°C only crystalline PLLA still exhibits useful mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
在气相法聚丙烯生产装置上成功地开发出汽车用共聚聚丙烯系列树脂,研究了该树脂的力学性能及热性能。结果表明,它们具有高冲击强度、适宜的弯曲模量及硬度,Izod冲击强度常温为7~12k/m^2.低温为3-4kJ/m^2,弯曲模量为900-1200MPa,洛氏硬度大于85。  相似文献   

4.
5.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

6.
Unidirectional glass fiber reinforced furfuryl alcohol (FA) composites have been prepared by the pultrusion processes. The optimum processing parameters of the glass fiber reinforced FA composites by pultrusion has been studied. The effects of the optimum processing parameters on the properties (flexural strength, flexural modulus, notched Izod impact strength, glass transition temperature (Tg), dynamic shear storage modulus (E'), shrinkage ratio, and roughness) investigated including die temperature, pulling rate, postcure temperature and time, and filler type and content. Results show that the pultruded composites possessed various optimum pulling rates at different die temperatures. On the basis of the DSC diagram, the swelling ratio and the mechanical properties of pultruded composites, the optimum die temperature can be determined. The mechanical properties and Tg increase at a suitable postcure temperature and time. Furthermore, the properties which decrease due to the degradation of pultruded composites for a long postcure time will be discussed. The mechanical properties of pultruded composites reach a maximum value at various filler content corresponding to the talc and calcium carbonate, respectively, and then decreased. When the fillers are added to the pultruded glass fiber reinforced FA composites, the shrinkage ratio of composites become smaller, and the surface of composites became smooth. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The morphologies, crystallization and melting behaviors, and mechanical, thermal and processing properties of polypropylene (PP)/CaCO3 toughening masterbatch (CTM) composites were investigated. The good dispersion of CaCO3 particles via appropriate surface encapsulation in the composites is proven by density measurements and scanning electron microscopy images. The crystallinity and tensile strength of PP decrease with the addition of CTM. The flexural modulus and storage modulus (E′) at 23 °C increase with CTM content, implying improved stiffness. A sharp increase in the Izod notched impact strength can be observed for the composites, and the critical ligament thickness (τc) is calculated to be 1.31 and 2.46 μm for PP (S1003) and PP (001 G) composites, respectively. The morphologies of the impact‐fractured surfaces of the specimens were observed, and the shear deformation is enhanced by the addition of CTM. The presence of CTM also increases the melt flowability and decreases the shrinkage of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45515.  相似文献   

8.
Biodegradable plastics were produced from sweet potato pulp (SPP) and cationic starch (CS) or chitosan composite (CC) by compression molding and their mechanical properties were tested. A universal testing machine, Rockwell hardness tester, and Izod impact tester were used for testing the mechanical properties (flexural strength, Rockwell hardness, and Izod strength) of the plastics. A central composite second‐order design was used to study the effects of temperature, time, and moisture content on the flexural strength, Rockwell hardness, and Izod strength of SPP/CS and SPP/CC blended plastics. The flexural strength, Rockwell hardness, and Izod strength of SPP‐based plastics was 101.1–305.9 kg/cm2, R29.0–R96.7, and 0.6–3.0 kg cm cm?2, respectively. Regression analysis predicted the optimal mechanical properties (flexural strength, Rockwell hardness, and Izod strength) to be attained with a 150–160°C temperature, 15–20‐min reaction time, and 20–23% moisture content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 423–434, 2002  相似文献   

9.
Simultaneous full‐interpenetrating polymer networks (full‐IPNs) based on blocked polyurethane (PU) and vinyl ester (VE) have been prepared. The static and dynamic properties of these IPNs have been examined. Results show that the tensile strength and flexural strength of IPNs increased with blocked PU content to a maximum value at 7.5 wt % PU content and then decreased. The tensile modulus, flexural modulus, and hardness of IPNs decreased with increasing blocked PU content. The impact strength of IPNs increased with increasing blocked PU content. The tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (kaolin) content to a maximum value at 20 to 25 phr filler content and then decreased. The higher the filler content, the greater the hardness, and the lower the impact strength of IPNs. The tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs increased with increasing VE initiator content. The dynamic technique was used to determined the damping behavior across a temperature range. Results show that the glass transition temperature (Tg) of IPNs are shifted inwardly compared with pure PU and VE, which indicated that the blocked PU–VE IPNs showed excellent compatible. Meanwhile, the glass transition temperature was shifted to a higher temperature with increased filler content. The dynamic storage modulus (E′) of IPNs increased with increasing VE and filler content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1977–1985, 1999  相似文献   

10.
The mechanical properties including tensile, flexural, and impact of the nanometer on calcium carbonate (nano‐CaCO3) filled polypropylene (PP)/poly (ethylene‐co‐octene) (POE) composites were measured at room temperature to identify the effects of the POE content on the mechanical properties. It was found that the Young's modulus, tensile strength, and tensile elongation at break decreased nonlinearly while the tensile fracture strength varied slightly with increasing the POE weight fraction; the V‐notched and unnotched Izod impact fracture strength increased nonlinearly with an increase of the POE weight fraction; the flexural modulus and strength decreased roughly linearly with increasing the POE weight fraction. Furthermore, the impact fracture surface of the specimens was observed by means of a scanning electronic microscope to discuss the toughening mechanisms. POLYM. COMPOS., 37:539–546, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
In this work, we have synthesis nylon‐6/polyethylene oxide (PEO) copolymer system based on feed ratio of PEO (0~ 10 wt %) through condensation polymerization in a pilot scale. The structure of copolymer was confirmed by Fourier transform infrared (FTIR) spectroscopy and verified by 1H nuclear magnetic resonance (1HNMR). The thermal properties were investigated by differential scanning calorimetry (DSC) and indicated both melting temperature (Tm) and cold crystallization temperature (Tc) appearing unapparent decreased while increased PEO content in copolymers. The incorporation of PEO into the nylon‐6 chain reduced its tensile strength, modulus, and heat distortion temperature (HDT). The notched Izod impact strength of and ductility of the copolymers improved significantly as the PEO content was increased. The plasticizing effect was caused by the soft segments from PEO, which increases the mobility of the molecular chain in the copolymers. The results of mechanical tests agree closely with dynamic mechanical analysis (DMA) measurements. A rheological investigation revealed that neat nylon‐6 and its copolymer displayed similar behavior. The crystalline structure was examined by wide‐angle X‐ray diffraction (WAXD). The results demonstrate that the addition of a little PEO altered the crystallization from the α form to the γ form, mainly owing to the breaking parts of the original H‐bonds by the incorporation of ether groups. A mechanism of interaction between the amide and the ether group in nylon‐6/PEO copolymers is proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Curing of N,N,N′,N′‐tetraglycidyldiaminodiphenylmethane with new curing agents like 3,3′‐dichloro‐4,4′‐diaminodiphenylmethane and 2,2′‐dichloro‐4,4′‐diaminodiphenylmethane in comparison with diaminodiphenylmethane and 4,4′‐diaminodiphenylsulphone (DDS) was carried out using dynamic differential scanning calorimetry. The shelf life of various epoxy formulations was evaluated by the residual cure exotherm method. The glass‐transition temperatures of cured epoxy formulations were determined using dynamic mechanical analysis. The mechanical properties such as the tensile strength, tensile modulus, flexural strength, and Izod impact strength were also evaluated and compared. The activation energy, frequency factor, and shelf life of chloro‐substituted hardener formulations were high as compared to those of unsubstituted hardener formulations. The marginal differences in the glass‐transition temperature, tensile strength, tensile modulus, and flexural strength and the small decrement in the Izod impact strength values were interpreted in terms of chlorine substitution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3082–3088, 2002; DOI 10.1002/app.2337  相似文献   

13.
煤矸石填充聚酰胺6复合材料的结构与性能研究   总被引:3,自引:0,他引:3  
采用熔融共混法制备了聚酰胺6/煤矸石复合材料,研究了复合材料的力学性能、微观结构、结晶行为和流变性能。结果表明:煤矸石的加入使聚酰胺6的的拉伸强度、弹性模量、弯曲强度和弯曲模量分别增加了约53.8%、66.1%、37.1%和63.4%,而冲击韧性基本保持,煤矸石最佳填充量为25%;煤矸石在聚酰胺6基体中分散均匀,复合材料具有韧性断裂特征;煤矸石使聚酰胺6的结晶温度由187.0℃升高到191.3℃,过冷度由33.6℃降至18.9℃,结晶温度范围变窄,即煤矸石提高了聚酰胺6的结晶速率,对聚酰胺6具有异相成核作用;在所研究的剪切速率范围内,聚酰胺6及其复合材料的流变行为表现为假塑性,煤矸石的加入使非牛顿指数减小,聚酰胺6对剪切敏感性下降。  相似文献   

14.
ABSTRACT

We demonstrate the influence of fluorine interface to the crystallization of poly(vinylidene fluoride) (PVDF)/silicone rubber (SR)/fluororubber (FKM) tertiary dynamic curing blends. In contrast to PVDF/SR binary blend, the average size of PVDF spherulites turns smaller and the crystallization rate is lower in PVDF/SR/FKM tertiary blend when more fluororubber component was added into the blends at the same crystallization temperature. Incorporation of FKM does not change the crystalline form of PVDF in the blends. The resulting mechanical properties of tensile strength, flexural strength, Izod impact strength and elongation at break for PVDF/SR/FKM tertiary blends are enhanced compared with PVDF/SR binary blend.  相似文献   

15.
In this study, 5, 10, and 15 vol.% of bronze (Cu-10 wt.% Sn) powder on the physical and mechanical properties of Acrylonitrile-Butadiene-Styrene (ABS) were investigated experimentally. After preparing metal-polymer matrix composites (PMC) with a twin screw extruder and injection molding, fracture surface, the modulus of elasticity, yield and tensile strength, percentage elongation, Izod impact strength, hardness (Shore D), melt flow index (MFI), heat deflection temperature (HDT), Vicat softening point, and glass transition temperature (T g) of each sample were determined. As compared to the unfilled ABS. It was found that by increasing the vol.% of bronze in ABS, yield and tensile strength, % elongation, Izod impact strength, MFI values decreased, while the modulus of elasticity, Shore D hardness, Vicat softening point, and HDT values increased.  相似文献   

16.
The effects of quenching temperature including different thermal histories on mechanical, physical, and thermal properties of pigmented polycarbonate (PC/TiO2) were investigated. Tensile test, Izod impact strength and heat distortion temperature (HDT) were performed on specimens of 3 mm thickness. Pigment content and quenching temperature are two key factors that affect the properties of the materials. A higher content of pigments results in an increase of modulus of elasticity and a decrease of unotched and notched Izod impact strength, as well as elongation at break. A maximum of yield stress and HDT is obtained at 3% of TiO2, which was considered as the optimum level of pigment. An additional second quenching at 40°C has allowed to improve Izod impact strength and elongation at break of specimens with 3% of TiO2; whereas modulus of elasticity, density, yield stress, and HDT were minimum at this quenching temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
This article reports on an experimental study of the physical and mechanical properties of Polystyrene (PS) and Fe-PS polymer composites containing 5, 10, and 15 vol.% of Fe powder. After mixing Fe powder and PS in a twin-screw extruder, an injection-molding machine was used to prepare unfilled PS and Fe-PS polymer composite samples. After that, the material properties were experimentally determined for each sample. The investigated material properties included the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), melt flow index (MFI), heat deflection temperature (HDT), Vicat softening point, and glass transition temperature (T g ). The results indicated that, compared to the unfilled PS, an addition of Fe into PS decreases the yield and tensile strength, % elongation, and Izod impact strength. Furthermore, it was determined that the Fe particles increase the modulus of elasticity, hardness, MFI, Vicat softening point, and HDT values.  相似文献   

18.
The anionic polymerization of a variety of secondary alkyl crotonates and related monomers initiated by fluorenyllithium (complexed with tetrahydrofuran) in toluene at ?78°C. is reported. No crystallinity could be developed in any of the samples, and nuclear magnetic resonance was uniformative about possible tacticity. The polymerization techniques were ineffective when applied to n-alkyl esters. Polymer was obtained from isopropyl cinnamate and N,N-dimethyl crotonamide, but not from isopropyl thiocrotonate or isopropyl 2-pentenoate. The physical properties of injectionmolded specimens of polymers of isopropyl, s-butyl and cyclohexyl crotonate were examined in some detail; the polymers exhibited a desirable combination of high service temperatures and good impact resistance for a vinyl homopolymer but were extremely difficult to mold. Poly(isopropyl crotonate) had a heat distortion temperature of 125°C. at 85 psi, a notched Izod impact of 2.4 ft.-lb./in. of notch, and a flexural modulus of 274,000 psi.  相似文献   

19.
In this study, the effect of Fe powder on the physical and mechanical properties of high density polyethylene (HDPE) was investigated experimentally. HDPE and HDPE containing 5, 10, and 15 vol % Fe metal–polymer composites were prepared with a twin screw extruder and injection molding. After this, fracture surface, the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), Vicat softening point, heat deflection temperature (HDT), melt flow index (MFI), and melting temperature (Tm) were determined, for each sample. When the physical and mechanical properties of the composites were compared with the results of unfilled HDPE, it was found that the yield and tensile strength, % elongation, and Izod impact strength of HDPE decreased with the vol % of Fe. As compared with the tensile strength and % elongation of unfilled HDPE, tensile strength and % elongation of 15 vol % Fe filled HDPE were lower, about 17.40% and 94.75% respectively. On the other hand, addition of Fe into HDPE increased the modulus of elasticity, hardness, Vicat softening, MFI, and HDT values, such that 15 vol % Fe increased the modulus of elasticity to about 48%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
Self-reinforced composites have been fabricated by compaction of oriented polyethylene terephthalate (PET) fibers under pressure at temperatures near, but below, their melting point. The originally white fiber bundles, which were about 40% crystalline, show increased crystallinity (55%) but optical translucency after processing. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were used to study the crystallization and orientation of the fibers, revealing that the degree of crystallinity was somewhat insensitive to compaction conditions while the melting point increased substantially with increasing compaction temperature. Crystalline orientation, gauged using the Hermans orientation parameter from WAXD data, indicated that no significant loss in orientation of the crystalline fraction occurs due to compaction. Mechanical characterization revealed a stepwise decrease in flexural modulus (9.4-8.1 GPa) and concomitant increase in transverse modulus and strength on increasing the compaction temperature from 255 to 259 °C. This transition in behavior was accompanied by a loss of optical transparency and a change in the distribution of amorphous fraction from fine intrafibrillar domains to coarse interfibrillar domains as seen with electron microscopy. We argue then that the mechanical properties of PET compactions are influenced more by orientation of the amorphous phase than that of the crystalline phase. The impact properties of compacted materials, characterized using an unnotched Charpy test method, showed remarkable impact resistance after compaction, with impact toughness decreasing as compaction temperature was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号