首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对后围加强板在成形过程中易出现破裂和起皱等问题,采用田口试验法,建立后围加强板最大减薄率和最大增厚率与冲压速度、压边力、模具间隙、摩擦系数和拉延筋阻力系数的五因素四水平田口试验,通过有限元分析软件Dynaform对16组试验进行模拟分析,结果表明压边力对后围加强板成形的减薄率和增厚率贡献最大.利用Design-Exprt软件对田口试验结果进行多目标优化,将最优工艺参数组合在Dynaform中模拟验证.结果表明多目标优化结果与验证结果接近,优化方法效果明显,可为模具设计和生产提供借鉴.  相似文献   

2.
基于Pareto最优解集的多目标粒子群优化算法和有限元方法,提出了一种解决板料冲压成形工艺优化的方法。以方盒件冲压成形为例,将最大增厚率和最大减薄率作为目标函数,以压边力、模具间隙、摩擦系数、冲压速度和凹模圆角半径作为设计变量,建立多目标数学模型。首先运用正交设计安排有限元仿真,然后利用RBF神经网络建立冲压成形工艺参数与厚度变化率之间的近似模型,再利用基于Pareto最优解集的多目标粒子群优化算法对冲压工艺参数优化得到一组非劣解集,最后从非劣解集中选取一组最优粒子。结果表明,利用该方法能快速、有效获得最优参数,起皱现象明显改善,避免产生破裂。  相似文献   

3.
在接线盒的成形过程中,为了解不同因素对接线盒成形质量的影响,获得最佳的成形参数,通过Dynaform建立有限元模型,结合Design-Expert软件设计响应面试验,通过试验获得最大减薄率和最大增厚率的多项式回归响应模型,进一步得出虚拟压边力、模具间隙和摩擦因数对工件最大减薄率和最大增厚率的影响程度,利用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)对最大减薄率和最大增厚率进行优化求解,得到最优工艺参数为:压边力为21400 N,模具间隙为1.25 mm,摩擦因数为0.08。最后在Dynaform中进行仿真试验,并结合实际生产进行验证。研究结果为接线盒的实际生产提供了理论基础。  相似文献   

4.
借助Dynaform数值模拟软件建立某型号发动机隔热罩的冲压成形仿真模型。在此基础上,选取冲压工艺参数为优化变量,定义最大减薄率和起皱率为评价指标,由此构建加权目标函数,采用均匀设计安排数值模拟试验和回归分析法分析试验数据,建立了工艺参数与加权目标函数的二次多项式回归模型,利用实数编码遗传算法对隔热罩冲压成形的最优工艺参数进行求解。数值模拟优化结果表明,针对隔热罩仿真模型,优化后的最大减薄率和起皱率分别为24.748%和6.791%,控制在较好范围内。  相似文献   

5.
基于正交试验的汽车引擎盖外板成形工艺参数优化   总被引:1,自引:0,他引:1  
对汽车引擎盖外板的成形工艺参数进行研究,借助Dynaform软件对其成形过程进行模拟。基于正交试验方法对压边力、摩擦系数、冲压速度、凸凹模间隙这4个工艺参数进行优化,得出了最佳的成形方案,最终零件的最大变薄率为27.52%,最大变厚率为9.48%。在仿真及正交优化的基础上进行了实际的拉深试模,得出零件的成形性能与有限元模拟结果一致。研究结果表明,基于正交试验法对冲压成形工艺参数优化是可行的,能够缩短产品试模周期,提高成形质量。  相似文献   

6.
以非线性有限元分析软件Dynaform为平台,基于粒子群算法优化的BP神经网络和灰色关联度,对盒形件成形过程进行成形参数寻优并反求。先利用正交试验法获取不同组合下的减薄率数值;采用灰色关联度理论,找到对该盒形件最大减薄率起主要影响的两个因素即压边力和摩擦因数;运用拉丁超立方抽样对选出的两个主要因素进行随机抽样,通过Dynaform进行数值仿真以获得样本数据;基于PSO-BP模型,将压边力和摩擦因数作为两输入值,最大减薄率作为输出,建立压边力和摩擦因数与最大减薄率之间的非线性映射关系,其后,利用粒子群算法对其优化可获得最优工艺参数和对应输入值。对比优化前后的数值模拟结果可知,优化后的冲压参数可以有效提高板料成形性能。  相似文献   

7.
基于GS理论和响应面寻优法,借助Dynaform非线性有限元分析软件,对某型汽车横梁件成形中存在减薄率过大的问题,进行工艺参数寻优。首先,通过正交试验获取一定参数组合下的减薄率。然后,借助GS理论,获得对减薄率产生主要影响的两个参数即冲压速度和模具间隙。最后,利用Design-expert软件,以设计冲压速度和模具间隙为输入参数,减薄率为输出参数,进行响应面法寻优。通过响应面法寻优的最优解与未优化之前的对比,优化后的冲压参数对横梁件的板料成形质量有显著提升。  相似文献   

8.
针对汽车吸能盒顶部圆角区域在冲压时易产生材料过度减薄进而引起开裂的成形缺陷问题,以压料力、脱料力和模具间隙为试验因素,以吸能盒最大减薄率最小化和成形极限图安全域占比最大化为质量优化目标,应用拉丁超立方试验设计方法结合有限元分析构建试验因素同质量优化目标之间的多种近似模型,并对近似模型的预测精度进行分析。基于多目标粒子群算法(MOPSO),在优选出的克里金(Kriging)近似模型内进行多目标寻优计算并得到帕累托(Pareto)解集,提出基于熵权逼近理想解排序法(TOPSIS),从Pareto解集中决策出1组最优工艺参数组合,并进行模拟和实际冲压生产验证。试验结果证明所提方法的可靠性及有效性,可为具有类似结构的汽车吸能盒的冲压生产提供有益借鉴。  相似文献   

9.
针对汽车的侧向铝合金防撞钢梁,提出了一种热冲压成形的工艺优化策略。建立了热冲压系统的有限元模型,选择最小厚度、开裂距离和坯料到模具的最大距离为质量目标,通过多目标优化遗传算法对热冲压工艺压边力和冲压速度进行了优化。首先以拉丁超立方法对工艺参数进行抽样,对抽样样本进行仿真实验,以响应面法建立热冲压工艺与质量目标之间的非线性函数关系;接着引入多目标遗传算法NSGA-II,以响应面法获取的函数作为适应度函数,通过迭代运算得到热冲压工艺的Pareto最优解;最后以优化的工艺组合进行热冲压试验验证,结果表明建立的工艺优化方法有效。  相似文献   

10.
板材在冲压成形过程中,复杂结构零件会产生很多缺陷,如起皱,拉裂及卸载后工件的回弹,严重影响了冲压件的成形精度。采用数值模拟与正交试验相结合的优化分析方法,研究了S梁覆盖件冲压成形工艺的优化。依据正交试验方案,以凹模圆角半径、冲压速度、摩擦系数、压边力为研究因子,最大减薄率、最大增厚率为评价指标,采用有限元软件Dynaform进行冲压成形模拟。最终得到了最优的凹模圆角半径、冲压速度、摩擦系数、压边力等工艺参数组合。  相似文献   

11.
以油箱盖板为研究对象,利用Dynaform有限元软件模拟了油箱盖板的拉深成形过程,分析了板料拉深成形过程中的起皱与拉裂等缺陷,选取模具间隙、冲压速度以及压边力3种工艺参数进行正交试验及参数优化,通过正交试验的极差分析得出影响油箱盖板最大减薄率的主次顺序为:模具间隙、压边力、冲压速度.此外由方差分析可知模具间隙及压边力对最大减薄率的影响显著.模拟结果表明,油箱盖板拉深成形的最优工艺方案为:模具间隙1.5t,冲压速度3000 mm·s-1以及压边力60 kN,其零件的最大减薄率及最大增厚率分别为13.23%与11.12%.采用拉深模具对优化后的工艺方案进行实验验证,零件的最大减薄率及最大增厚率分别为14.87%与12.64%,模拟结果与实验结果比较吻合,且油箱盖板的成形质量较好.  相似文献   

12.
汽车翼子板拉深成形模拟及工艺参数优化   总被引:1,自引:0,他引:1  
以汽车翼子板为研究对象,采用有限元分析软件Dynaform对其拉深成形过程进行了模拟。针对拉深成形过程中出现的破裂和起皱等缺陷,选取压边力、冲压速度、板料厚度、摩擦系数4个重要成形工艺参数进行正交试验及参数优化,模拟结果表明,最优拉深成形工艺方案为:压边力1600kN、冲压速度3000mm·s-1、板料厚度1.0mm和摩擦系数0.10,得到零件的最大变薄率为27.7%,最大变厚率为8.5%。采用优化工艺方案进行汽车翼子板拉深试模,成形件质量较好,经检测零件最小壁厚0.728mm,最大壁厚1.08mm,试模结果与有限元模拟结果基本一致。  相似文献   

13.
《锻压技术》2021,46(10):62-69
为了提高冲压成形件的精度,利用工艺参数优化与模具型面补偿对回弹进行控制。以高强钢TRIP780双C件为研究对象,使用有限元软件Dynaform对双C件的冲压、回弹过程进行数值模拟。通过冲压试验,并使用三坐标测量仪测量冲压件的回弹角,以验证有限元模型的精度。以成形后的回弹角为优化目标,基于正交试验,筛选出对回弹影响程度较大的因素。运用拉丁超立方抽样方法进行随机抽样,建立工艺参数与回弹角的Kriging代理模型,并采用多目标优化遗传算法寻求最佳工艺参数的Pareto解集。基于最佳工艺参数,利用模面补偿对双C件回弹进行控制,并对比优化前后的回弹角,结果表明该方法能有效地减小双C件的回弹。  相似文献   

14.
以涡轮壳作为研究对象,利用Simufact Forming软件对涡轮壳的成形回弹进行有限元仿真。以模具弯曲半径、模具间隙以及冲压速度作为影响因素,将板料的回弹量作为优化目标,借助正交试验法设计了4因素3水平仿真试验。通过仿真实验得到了各因素对板料成形回弹量影响的顺序分别为:模具间隙、模具弯曲半径、冲压速度;涡轮壳冲压成形的最优工艺参数组合方案为:模具间隙为1.0t、模具弯曲半径为55.2 mm、冲压速度为15 mm·s~(-1);最优方案下的回弹量仿真值为0.436 mm。随后,利用冲压模具对优化方案进行试验验证,结果显示,回弹量的试验值为0.494 mm,仿真值与试验值之间的误差为13.3%,验证了有限元仿真的正确性。  相似文献   

15.
针对铝合金复杂件冲压后出现的较大回弹缺陷,同时为减少冲压成形工艺参数的优化时间,使用有限元仿真软件DYNAFORM对冲压成形及回弹过程进行数值模拟,在确保数值模拟与试验结果基本一致的基础上,利用代理模型对回弹进行了优化研究。以NUMISHEET'96 S梁为研究对象,凸模圆角半径、凹模圆角半径、压边力、板料厚度作为影响因素,成形后最大回弹值作为成形目标,运用拉丁超立方抽样,通过数值仿真获得样本数据,建立影响因素与成形目标之间的小波神经网络代理模型,利用粒子群算法对该模型迭代寻优获得最优工艺参数。结果表明:小波神经网络能较好地描述板料工艺参数与回弹之间的映射关系,优化后成形件的回弹量大大减小。  相似文献   

16.
为解决某轻型卡车驾驶室底板在拉深成形过程中出现开裂的问题,以Dynaform软件为平台,利用灰色理论和响应面法,对拉深成形过程中的参数进行优化,首先将灰色理论和正交试验相结合,获得在不同参数组合下板料成形的最大减薄率,然后对试验数据进行灰色关联度分析,获取对最大减薄率产生影响的2个主要参数:压边力和模具零件间隙,最后将模具零件间隙和拉深筋的高度作为输入,最大减薄率作为输出,进行响应面法寻优得到最优解。通过对比优化前后的成形效果和试验结果可知,优化后的工艺参数改善了轻型卡车底板拉深成形质量。  相似文献   

17.
以压力容器上封头零件为例,通过对零件成形工艺进行分析,以板料最大减薄率为优化目标,基于正交试验,结合灰色关联理论分析和响应面中心复合设计方法,利用Dynaform软件研究了压边力X1、摩擦因数X2、冲压速度X3以及模具间隙X4对封头零件成形质量的影响,得到最优工艺参数为压边力154.8 kN,摩擦因素0.15,模具间隙...  相似文献   

18.
借助Dynaform软件建立了发动机隔热罩冲压成形仿真模型。为了解决隔热罩的过度减薄和起皱等问题,使用正交设计进行了工艺参数优化。在优化过程中,工艺参数为优化变量,最大减薄率和起皱率为评价指标。通过最大减薄率、起皱率构建目标函数。结果表明,采用最大减薄率和起皱率的组合构建加权目标函数可获得隔热罩较优的工艺参数,提高发动机隔热罩的成形质量。  相似文献   

19.
汽车覆盖件冲压成形过程中,有诸多工艺参数对零件的成形质量有着重要的影响。以某车型后地板为例,采用正交试验的方法研究压边力、冲压速度、模具间隙、摩擦系数4个工艺参数对最大变薄率和最大增厚率的影响大小。试验表明,各因素对目标的影响程度各不相同。对最大变薄率的影响由强到弱依次为摩擦系数、压边力、模具间隙、冲压速度;对最大增厚率来说,压边力影响最大,摩擦系数次之,模具间隙和冲压速度对最大增厚率影响不大。在正交试验的基础上对4个工艺参数进行优化,通过对优化后工艺方案进行有限元模拟可以发现,最大变薄率和最大增厚率都得到了有效控制,并且零件的成形质量较好。  相似文献   

20.
以6016铝合金散热壳体为研究对象,通过分析零件的成形工艺,确定采用Dynaform软件对零件的拉深成形工艺进行有限元模拟,以零件的最大减薄率为评价其成形质量的指标。基于正交试验设计,研究了压边力、摩擦因数、冲压速度以及模具间隙对零件成形质量的影响规律。基于灰色系统(GS)理论分析出与零件最大减薄率关联度较高的工艺参数,并通过响应面法(RAM)进行中心复合设计(CCD),得到最优的工艺参数组合为:压边力为20.1 kN、摩擦因数为0.16、冲压速度为1500 mm·s^(-1)、模具间隙为1.05 mm,零件最大减薄率为23.029%。将采用该方案制得的实体零件与数值模拟结果进行对比和分析,结果表明数值模拟分析结果具有可靠性,可为散热装置零件的成形提供一定指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号