首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用硫酸锰(MnSO4)高温热解的方法制备了Mn2O3,并考察了热解制备过程中产生的尾气浸出低品位软锰矿的可行性。热解实验表明,850℃是硫酸锰热解制备Mn2O3的最佳温度。硫酸锰在850℃热解所得Mn2O3产品的锰含量为68.93%。产品的XRD和FTIR表征结果表明,热解产物为单一相的立方体结构Mn2O3。尾气测定结果表明,硫酸锰热解制备Mn2O3时释放出的尾气中含有SO2和SO3,两者摩尔比约为7∶1。浸出实验结果表明利用热解尾气浸出软锰矿是可行的。在温度为60℃,初始硫酸浓度为0.1 mol/L时,尾气中SO x(SO2和SO3)的吸收率达到99.73%,软锰矿的锰浸出率达到94.37%。该工艺不仅可以避免液相制备方法中废水的问题,还可以使得热解制备过程产生的尾气和低品位软锰矿同时得到资源化利用。  相似文献   

2.
介绍了目前利用低品位软锰矿制备硫酸锰的工艺现状以及目前正在开发的工艺,并且简述了它们的优缺点。对低品位软锰矿资源的开发利用具有一定的指导意义。  相似文献   

3.
副产物连二硫酸锰(MnS2O6)生成是限制废气二氧化硫还原浸出软锰矿副产硫酸锰工艺工业化应用的技术瓶颈和关键科学问题。迄今,MnS2O6的生成机制尚未明确,难以为探究其工艺控制措施提供有效理论依据。基于此,本文研究了SO2浸出软锰矿体系MnS2O6的生成机制,阐明了MnS2O6生成速率控制步骤和动力学过程。首先基于反应体系理论分析,提出基于表面吸附和电化学模型的自由基生成机制可用于解释MnS2O6的生成机制,其生成速率微观上取决于自由基HSO3形成速率,宏观上主要取决于体系H+和HSO- 3浓度,两者的反应级数均为1,推导的理论生成速率方程为 。随后通过动力学实验考察了体系SO2浓度、pH和温度对MnS2O6生成的影响,研究结果表明,MnS2O6生成速率随体系酸度和温度的升高呈现先快速减小后趋势趋缓,随体系SO2浓度的升高而升高,H+和SO2浓度对MnS2O6生成速率的反应级数分别为-0.057和0.9954,反应的活化能为6894.05 J/mol。最后基于液相SO2解离平衡关系,推导得到H+浓度和HSO- 3浓度对MnS2O6生成速率的反应级数分别为0.943和0.996,与理论速率方程的级数非常接近。研究结果验证了对MnS2O6生成机制的解释和动力学推导过程, 可为该工艺工业化应用时MnS2O6生成特性及抑制方法研究提供理论依据和有效途径。  相似文献   

4.
采用溶剂热法制备Mn_2O_3微球,与化学氧化法制备的聚苯胺按不同比例混合,制得Mn_2O_3/PANI,将其涂覆于Q235碳钢表面制备复合涂层.采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)和红外光谱(FTIR)表征Mn_2O_3/PANI的表面形貌和结构,利用动电位极化和电化学阻抗谱研究复合涂层的耐蚀性能.结果表明,当Mn_2O_3在复合材料中的质量分数为10%时,防腐性能最优.在3.5%NaCl溶液中浸泡7天后,相较于Q235裸钢,其自腐蚀电位正移约380 mV,自腐蚀电流密度降低约3个数量级;浸泡37天后,其仍有良好的稳定性和耐蚀性.  相似文献   

5.
MXene 具有较大比表面积和优异的导电性, 当与金属氧化物半导体结合时可以抑制片层团聚, 还可以大大提高载流子转移速率, 提高气敏性能。通过简单的水热和煅烧两步法成功合成了Fe2O3/Nb2O5/Nb4C3Tx 三元复合材料。通过表征, Fe2O3 微米球分布在 MXene 纳米片层之间。气敏测试结果表明, 与原始Fe2O3相 比, Fe2O3/Nb2O5/Nb4C3Tx 传感器对丙酮的响应能力有明显的提高。传感器灵敏度高, 选择性较好, 对环境中 浓度为 5 ×10?6 的丙酮响应高 (Ra /Rg = 7.81, 30% RH), 响应和恢复速度快, 具有出色的重复性和长期稳定性。Fe2O3/Nb2O5/Nb4C3Tx 传感器具有良好的气敏性能, 主要因为三元复合材料提供了较大比表面积和丰富的氧空位, 增强了活性位点, 使得气体易于在传感器表面扩散, 为开发丙酮敏感复合材料提供了参考。  相似文献   

6.
La2O3和CeO2的制备及催化臭氧氧化对氯硝基苯   总被引:1,自引:0,他引:1  
为提高单独臭氧氧化去除水中有机污染的能力,分别以La(NO3)3.6H2O和Ce(NO3)3.6H2O为前驱体,采用水解沉淀法制备La2O3和CeO2粉体,利用X射线衍射、N2吸附、扫描电镜以及红外光谱分析技术对样品的晶相结构、粒径大小、比表面积、孔容、孔径分布以及表面官能团等进行表征.以蒸馏水配制的对氯硝基苯溶液(pCNB)为目标物,考察La2O3和CeO2的催化臭氧氧化活性.结果表明,La2O3和CeO2对pCNB的吸附作用有限,20 min的吸附率分别为6.7%和9.9%.臭氧对pCNB的去除能力有限,反应20 min的去除率仅为37.2%,以La2O3为催化剂时,去除效果有明显增加,反应20 min时去除率为82.1%,而以CeO2为催化剂时,去除效果反而没有O3单独氧化效果好,20 min时的去除率仅为24.3%.  相似文献   

7.
为探索船舶尾气高效脱硝新方法,本文使用水力空化强化Na2S2O8进行湿法氧化脱硝。通过与鼓泡方式进行对比,证明了水力空化强化Na2S2O8脱硝的可行性。研究了溶液温度、入口压力、氯离子(Cl-)等因素对NO去除率的影响。结果显示:当Na2S2O8浓度为0.1 mol/L时,溶液温度从30℃升高到80℃,NO去除率由9.8%增长到71.2%。NO去除率随水力空化反应器入口压力提高呈现先上升后下降的趋势。入口压力为350 kPa时,NO去除率最高。Cl-可以显著提高NO去除率。溶液温度为60℃时,在浓度为0.1 mol/L的Na2S2O8溶液中加入氯化钠,能产生HOCl、Cl2等含氯氧化性物质,从而极大地增加反应溶液的氧化能力。NO去除率超过90%的维持时间长达14...  相似文献   

8.
为提高催化剂抗砷能力,采用密度泛函理论(DFT)方法研究As2O3在α-Fe2O3(001)表面的吸附行为以及掺杂Mo、Mn、Ni对α-Fe2O3(001)表面As2O3吸附行为的影响。建立As2O3在α-Fe2O3(001)表面吸附模型和Mo、Mn、Ni掺杂的吸附模型,计算As2O3在催化剂表面的吸附能,分析成键态密度以及掺杂前后的As2O3在α-Fe2O3(001)表面的电荷布局。结果表明:这4种体系均发生电子转移,Mo掺杂活化了As2O3分子,使得As2O3倾向于吸附在Mo活性位点上,保护了Fe活性位点,...  相似文献   

9.
为了解决石灰法处理甲醛废水产污量多、管道易结垢及出水色度高等问题,采用锰砂/H2O2/O3催化氧化体系对某药业公司高浓度甲醛废水进行中试研究,考查影响催化效果的反应条件。结果表明:在臭氧量为100 g/h、pH=5、反应时间为2 h、双氧水投加量为0.30%、反应温度为40℃、锰砂投加量为容器体积的60%条件下,处理效果达到最佳,甲醛去除率可达87.3%,化学需氧量去除率可达60.0%,色度去除率可达95.0%。该体系利用锰砂和双氧水联合催化臭氧氧化处理甲醛废水,降低有机污染物的含量,具有氧化效率高、操作简便、无二次污染等优点,以期为高浓度甲醛废水处理提供参考。  相似文献   

10.
采用溶胶—凝胶燃烧法制备了纳米级钙钛矿型复合氧化物La0.67Sr0.33Mn0.7Fe0.3O3,通过XRD、SEM对样品的物相和形貌进行表征,结果表明所得La0.67Sr0.33Mn0.7Fe0.3O3样品为钙钛矿结构,直径约为50纳米,长度为1μm.以350 W氙灯做光源,催化降解亚甲基蓝水溶液,反应6 h,降解率达到96%.  相似文献   

11.
MnO2热分解制备Mn3O4的动力学研究   总被引:2,自引:0,他引:2  
为了得到MnO2热分解制备Mn3O4的动力学方程,用TG/DTA和XRD研究MnO2的热分解过程。研究表明MnO2的分解是分步进行的,4MnO2=2Mn2O3 O2↑的动力学方程为G(α)=[-ln(1-α)]12(T<625℃)和G(α)=[-ln(1-α)]13(T≥625℃),表观活化能为90.239 kJ/mol;6Mn2O3=4Mn3O4 O2↑的动力学方程为G(α)=[-ln(1-α)]13,表观活化能为204.67 kJ/mol;两个过程属于晶核形成与增长控制过程。  相似文献   

12.
以MnSO4为原料、氨水为沉淀剂、空气为氧化剂,制备高纯Mn3O4。研究溶液pH值、反应温度以及催化剂对产物中Mn离子沉淀率和Mn含量的影响。结果表明:沉淀终点pH值为9.5时,Mn离子的沉淀率最大,达75.3%;当使用催化剂NH4Cl、控制氧化温度为40℃时,获得产物的Mn质量分数为71.5%、粒径小于200 nm,为高纯Mn3O4。  相似文献   

13.
以Mn3O4为锰源,采用固相反应法,在较低的温度(650℃)制得尖晶石LiMn2O4正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安和恒流充放电等技术对其相组成、微结构和电化学性能进行表征。结果表明该正极材料结晶良好,一次粒径约为150 nm。它的电化学性能,尤其是循环性能,明显优越于在较高温度合成的LiMn2O4。在电流密度为74 mA?g-1时,测得比容量为128 mAh?g-1,在1 480 mA?g-1时,比容量为105 mAh?g-1;在室温、148 mA?g-1充放电200次循环后,容量保持率为93%。  相似文献   

14.
选用锰酸锂(Li Mn2O4)、复合镍钴锰酸锂(Li Ni1/3Co1/3Mn1/3O2)按不同比例混合作为正极,软碳作为负极材料,制备复合镍钴锰酸锂与锰酸锂混合型锂离子全电池(简称混合型锂离子全电池),选择质量分数为15%,35%的Li Mn2O4与Li Ni1/3Co1/3Mn1/3O2混合作为正极活性物质进行实验,研究Li Mn2O4对锂离子全电池充放电性能、安全性能、倍率放电性能、脉冲功率特性等的影响。结果表明:Li Mn2O4质量分数为35%时,既提升了锂离子全电池的电性能,又保证了其较高的安全性能;常温下电流为1I1(I1代表1 h率放电电流)充放电循环预计寿命可达到1 500周,55℃高温下电流为0.5I1充放电循环335周容量保持在92%以上;在放电深度(DOD)10%~80%内10 s脉冲充放电状态下,混合型锂离子全电池阻抗均在9 mΩ以下,50%DOD时的10 s放电比功率在700 W/kg以上。  相似文献   

15.
微晶电解二氧化锰制备Mn_3O_4的研究   总被引:3,自引:0,他引:3  
提出用微晶电解MnO2 制备电子级Mn3 O4的方法 .探讨了几个主要工艺条件对制备微晶电解二氧化锰的影响 ,以及焙烧时间和焙烧温度对Mn3 O4转化率的影响 .继而用X射线衍射、扫描电子显微镜、原子吸收光谱及测定磁化率等手段评价Mn3 O4的理化性能 .实验结果表明 :用微晶电解二氧化锰可制备出优质的电子级Mn3 O4.  相似文献   

16.
铁磁性Fe3O4负载TiO2纳米粒子的制备表征及光催化活性   总被引:1,自引:0,他引:1  
以FeSO4·7H2O和Degussa P25型TiO2(P25 TiO2)为原料,通过原位生长法制备了具有高催化活性及铁磁性的Fe3O4负载TiO2催化剂(Fe3O4/TiO2).采用高分辨透射电镜(HR-TEM),X射线衍射仪(XRD)和振动样品磁强计(VSM)对所得催化剂的结构和性能进行了表征.紫外光催化降解乙酸溶液的结果表明,Fe3O4/TiO2的催化活性是P25 TiO2的3倍左右.基于上述研究,构建了新型磁性定位光催化体系,通过对弱酸性黄G溶液催化降解的研究,表明即使在无搅拌的状态下,该复合粒子也具有较高的光催化活性,并且可以通过外界磁场有效地分离并加以回收利用,是较为理想的光催化剂.  相似文献   

17.
采用共沉淀法制备了超细微Fe3O4粉体,以氨水作为沉淀剂,加入到Fe2+和Fe3+的混合溶液中,制得Fe3O4粉体粒子.为了使Fe3O4颗粒的分散良好,加入少量油酸.通过扫描电镜、X射线衍射和红外光谱谱图等进行表征、分析,证明由该法所制得的Fe3O4粒子形貌为球形,分散较好.  相似文献   

18.
静电纺丝法制备微孔Mn2O3微/纳米纤维及纤维结构表征   总被引:2,自引:1,他引:1  
以聚乙烯吡咯烷酮(PVP)为络合剂与醋酸锰Mn(CH3COO)2]反应制得前驱体溶液,用静电纺丝法制备了PVP/Mn(CH3COO)2纤维,经煅烧得到具有微孔结构的Mn2O3微/纳米纤维.对所制备纤维的结晶度、纯度和表面形貌,分别采用差热-热重分析(TGDTA)、红外光谱分析(IR)、X射线衍射(XRD)分析、扫描电镜(SEM)等手段进行了表征.结果表明:煅烧前后纤维的结晶度和形貌发生很大变化.  相似文献   

19.
用微波、红外、烘箱3种干燥方法制备了负载型纳米ZrO2/Al2O3复合载体,同时在复合载体表面负载SO2-4制成SO2-4/ZrO2/Al2O3催化剂,将此催化剂用于α-蒎烯催化异构化反应中.用XRD、FT-IR、TPD等对催化剂的表面积、孔径、晶相结构、酸强度等进行了表征.结果表明,微波干燥法制备的复合载体催化剂(SO2-4/ZA-W)中ZrO2的粒度较小(平均6 nm),比表面积为156.1 m2/g,平均孔径为4.95 nm,其表面酸性中心数和酸强度均高于红外干燥法和烘箱干燥法制备的催化剂.SO2-4/ZA-W催化剂在α-蒎烯催化异化反应中具有较高的活性,α-蒎烯转化率为95.6%,α-松油烯、柠檬烯等单环萜烯的含量达到56.5%.  相似文献   

20.
采用均匀沉淀法在Fe3O4表面包覆TiO2,制备新型纳米TiO2/ Fe3O4光催化材料,并通过改变pH值、温度、TiO2/Fe3O4的比例和硫酸钛浓度等得到材料制备的最佳条件.用X射线衍射分析了复合颗粒的形态结构及包覆情况.通过可溶性染料活性艳红X-3B的降解反应,考察了光催化活性.结果表明,用最佳条件制备的复合材料对活性艳红的脱色率达97.12%.光降解动力学结果表明:对活性艳红X-3B染料的光催化降解反应符合一级反应动力学.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号