首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+-intercalated carbon nanotubes (Na-CNTs) were obtained by impregnation of CNTs with sodium acetate followed by annealing at high temperatures under argon. Stable Na-CNTs-supported Pt catalysts (Pt/Na-CNT catalysts) were then prepared for hydrogen purification via preferential CO oxidation in a H2-rich stream (CO-PROX). Characteristic studies show that the content of Na+ species in CNTs is increased with increased annealing temperature and the Pt nanoparticles with an average size of 2–3 nm are uniformly dispersed on the surfaces of Na-CNTs. An optimized Pt/Na-CNT catalyst with 5 wt% Pt loading can completely remove CO from 40 °C to 200 °C. This catalyst also exhibits long-term stability for 1000 h at 100 °C in feed gas containing 1% CO, 1% O2, 50% H2, 15% CO2, and 10% H2O balanced with N2. The electron transfer between the Pt nanoparticles and Na+ species plays an important role in enhancing the CO-PROX performance of the catalyst.  相似文献   

2.
A series of potassium promoted Ru/meso-macroporous SiO2 catalysts were prepared and used for the preferential oxidation of CO (CO-PROX) in H2-rich gases. The catalysts were characterized by using techniques of TEM, SEM TPR, XPS, and N2 adsorption/desorption. The catalytic activity of Ru/meso-macroporous SiO2 was markedly improved by the introduction of potassium. The catalyst of K-5 wt.% Ru/meso-macroporous SiO2 with molar ratio of K:Ru = 5:7 exhibited relatively high activity and selectivity for CO-PROX. Nanoparticles of ruthenium species can be highly dispersed on the meso-macroporous SiO2 support by the simple impregnation method. The addition of potassium weakened the interaction between metallic Ru and the silica support. Lowering the reduction temperature of ruthenium ions could keep ruthenium in the state of metallic Ru, and it was proposed that potassium acted as an electron donating agent. The electron donating effect of potassium improved the low temperature activity for CO oxidation and increased the selectivity of O2 for CO oxidation, thus K-modified Ru/meso-macroporous SiO2 catalyst showed obviously a wide temperature window for CO elimination from H2-rich gases, meanwhile the related mechanism was discussed.  相似文献   

3.
Multi-walled carbon nanotubes (MWNTs) confined Ru catalysts were prepared by a modified procedure using ultrasonication-aided capillarity action to deposit Ru nanoparticles onto MWNTs inner surface. The structure properties of MWNTs supports and Ru catalysts were extensively characterized by XRD, TGA, H2-TPR, XPS, TEM, FTIR and Raman spectra. The catalytic performance in the preferential oxidation of CO in a H2-rich stream was examined in detail with respect to the influences of Ru loading, MWNTs diameter, various pretreatment conditions, and the presence of CO2 and H2O in the feed stream. In contrast with Ru catalysts supported on MWNTs external surface and other carbon materials, the superior activity was observed for the MWNTs-confined Ru catalyst, which was discussed intensively in terms of the confinement effect of carbon nanotubes. The optimized catalyst of 5 wt.% Ru confined in MWNTs with diameter of 8–15 nm can achieve the complete CO conversion in the wider temperature range and the favorable stability at 80 °C under the simulated reformatted gas mixture, which proves a promising catalyst for preferential CO oxidation in H2-rich stream.  相似文献   

4.
Mesoporous copper manganese oxides with high surface areas (>268 m2/g) were prepared using the redox method and tested in the preferential oxidation of CO. These materials were highly active and selective under typical operating conditions of a proton-exchange membrane fuel cell. The synthesized catalysts preferentially oxidized CO with a stoichiometric amount of oxygen in the feed gas. The presence of CO2 and H2O in the feed gas retarded catalytic activity significantly at low (<90 °C) temperatures. The catalysts showed stable activity in long-term (12 h) experiments with realistic feeds. The high catalytic activity was attributed to a combination of factors, including high surface area, low crystallinity, low activation energy for CO oxidation, compositional homogeneity of the copper manganese oxides, and the presence of readily available lattice oxygen for CO oxidation. The high selectivity (100% with stoichiometric reactants) was ascribed to the lower activation energy for CO oxidation compared to the activation energy for H2 oxidation.  相似文献   

5.
A Polyaniline (PANI) assembled Au/TiO2 catalyst (Au/TiO2–PANI) was prepared by deposition–precipitation with the assistance of in-situ polymerization assistance, and was performed for oxidizing CO in H2-rich stream under visible light irradiation. It is found that the as-prepared Au/TiO2–PANI exhibited a higher activity of CO preferential oxidation (PROX) than the Au/TiO2 without PANI decoration at room temperature under visible light irradiation. Based on the results of structure characterization, photo-absorbance, photo-electrochemical, electron paramagnetic resonance, and adsorbing CO and H2 of Au/TiO2–PANI, it is proposed that the photo-excited electrons of PANI could transfer to TiO2 accompanied by suppressing the transfer of excited electrons induced by the localized surface plasmon resonance of Au nanoparticles to TiO2, resulting in the increases in surface electron densities of both Au and TiO2 sites. This will promote the activation of CO adsorbed at Au sites and the formation of O2 species at TiO2 sites, and then the oxidation of CO. Meanwhile, the protonation of N atoms in PANI could cause a spillover of the dissociative H at Au sites into PANI, resulting in the suppression of H2 oxidation.  相似文献   

6.
A series of Au/TiO2 catalysts were prepared by photo-deposition (PD) method. Various preparation parameters, such as pH value, power of UV light and irradiation time on the characteristics of the catalysts were investigated. The catalysts were characterized by inductively-coupled plasma-mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The preferential oxidation of CO in H2 stream (PROX) on these catalysts was carried out in a fixed-bed micro reactor with a feed of CO: O2: H2: He = 1: 1: 49: 49 (volume ratios) and a space velocity of 30,000 ml/g h. Limited amount of O2 was used to investigate the selectivity of O2 reacting with CO or H2. Au/TiO2 catalysts prepared by PD method showed narrow particle size distribution of gold particles within few nanometers and were found to be 1.5 nm. The particle size of gold nanoparticles deposited on the support depends on irradiation time, UV light source and pH value of preparation. The electronic structure of Au was a function of particle size. The smaller the Au particle size was, the higher the concentration of Au cation was. Using weak power of UV light, appropriate irradiation time and suitable pH value, very fine gold particles on the support could be obtained even in the powder form. The samples prepared with PD method did not need heat treatment to reduce Au cation, UV irradiation could reduce it. Therefore it is easier to have smaller particle size. Au/TiO2 catalysts prepared by PD method were very active and selective in PROX reaction. In long time test, the catalysts were stable at 80 °C for more than 60 h.  相似文献   

7.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

8.
In this work, Au supported over ZnO prepared by photodeposition was applied to prepare nano-size Au catalysts by utilizing UV light for the preferential oxidation (PROX) of CO. The results demonstrated that Au can be dispersed homogeneously over ZnO in the size range of 1–2 nm with a narrow size distribution. It was clearly seen that the preparation parameters (i.e. irradiation time, precipitant concentration, calcination, and storage condition) had a significant effect on the catalytic activity. Among the variables studied, low concentrations of precipitant and long irradiation time were by far the most influential on the catalytic activity.  相似文献   

9.
The purposes of this study were to prepare a copper catalyst by the microwave-heated polyol (MP) process and subsequently to evaluate the feasibility of the preferential oxidation of CO (CO-PROX) in excess H2. A CeO2-TD support was firstly prepared by the thermal decomposition from Ce(NO3)3·6H2O precursor. For comparison, commercial ceria (CeO2-C) and activated carbon (AC) selected as support materials. Experimental results of CO-PROX indicated that the highest catalytic activity is achieved when the Cu/CeO2-TD used as catalysts. Correlating to the characteristic results, it is found that the CeO2-TD support prepared by the thermal decomposition has a large surface area and high mesoporosity; these properties contribute to the easy adsorption of pollutants and the effective dispersion of metal particles. Further investigation of feed composition found that Cu/CeO2-TD catalysts possess 100% CO conversion even existence of CO2 and H2O in H2-rich streams at 150 °C. Besides, a decrease in CO conversion was clearly observed above 175 °C for Cu/CeO2-TD catalysts due to the reverse water gas shift reaction tending to reform CO from CO2 and H2.  相似文献   

10.
Selective oxidation of CO in H2-rich streams is performed over a series of CuO-MnOx-CeO2 catalysts prepared by hydrothermal (CuMC-HY), co-precipitation (CuMC-CP), impregnation (CuMC-IM) and citrate sol-gel (CuMC-SG) methods. The catalysts are characterized by N2 adsorption/desorption, XRD, SEM, HR-TEM, TPR and XPS techniques. The results show that the catalyst prepared by a hydrothermal method exhibits the best catalytic activity, especially at low temperatures. The temperature of 50% CO conversion (T50) is only 74 °C and the temperature window of CO conversions up to 99.0% is about 40 °C wide, from 110 to 140 °C. Moreover, the temperature window is still maintained 20 °C wide even at lower temperatures when there are 15% CO2 and 7.5% H2O in the reaction gas. The superior catalytic performance of CuMC-HY is attributed to the formation of Mn-Cu-Ce-O solid solution, the unique pore structure and the existence of more Cu+ and Mn4+ species as well as oxygen vacancies. The sequence of catalytic activity is as follows: CuMC-HY > CuMC-SG > CuMC-IM > CuMC-CP. The worst catalytic activity, obtained from the catalyst prepared by the co-precipitation method, is possibly related to the existence of independent CuOx and MnOx oxides, which weakly interact with ceria in the catalyst.  相似文献   

11.
The CeO2/CuO and CuO/CeO2 catalysts were synthesized by the hydrothermal method and characterized via XRD, SEM, H2-TPR, HRTEM, XPS and N2 adsorption–desorption techniques. The study shows that the rod-like structure is self-assembled CeO2, and both hydrothermal time and Ce/Cu molar ratio are important factors when the particle-like CeO2 is being self-assembled into the rod-like CeO2. The CuO is key active component in the CO-PROX reaction, and its reduction has a negative influence on the selective oxidation of CO. The advantage of the inverse CeO2/CuO catalyst is that it still can provide sufficient CuO for CO oxidation before 200 °C in the hydrogen-rich reductive gasses. The traditional CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/CuO catalysts present higher CO2 selectivity when the CO conversion reaches 100%. The performance of mixed sample verifies that they might be complementary in the CO-PROX system.  相似文献   

12.
A mechanistic study of the CO oxidation reaction over copper–cerium catalysts was performed based on our own results and information available in literature. The fit of parameters was carried out with kinetic information obtained ad-hoc. Two possible mechanisms whose main difference is the role of copper were proposed. The first one postulates changes in the oxidation state of both cations (cerium and copper) while, in the second mechanism, it was assumed that the redox cycle only occurs for the ceria component. The results allow to conclude that the catalytic cycle involves both redox couples (Ce4+/Ce3+ and Cu2+/Cu1+). The kinetic expression derived from this mechanism consists of five constants and is able to accurately predict the behavior of the reactor in different reaction conditions.  相似文献   

13.
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2−δ and Ti0.73Pd0.02Fe0.25O2−δ catalysts towards the CO oxidation and water gas shift (WGS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H2, nearly 100% conversion of CO to CO2 with 100% H2 selectivity was observed at 300 °C and 260 °C respectively, for Ti0.84Pt0.01Fe0.15O2−δ and Ti0.73Pd0.02Fe0.25O2−δ catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2−δ deteriorates in the presence of feed CO2 and H2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2−δ than Ti0.84Pt0.01Fe0.15O2−δ. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the kinetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts.  相似文献   

14.
Nanostructured catalysts based on combinations between oxidised copper and cerium entities prepared by two different methods (impregnation of ceria and coprecipitation of the two components within reverse microemulsions) have been examined with respect to their catalytic performance for preferential oxidation of CO in a H2-rich stream (CO-PROX). Correlations between their catalytic and redox properties are established on the basis of parallel analyses of temperature programmed reduction results employing both H2 and CO as reactants as well as by XPS. Although general catalytic trends can be directly correlated with the redox properties observed upon separate interactions with each of the two reductants (CO and H2), the existence of interferences between both reductants must be considered to complete details for such activity/redox correlation. Differences in the nature of the active oxidised copper–cerium contacts present in each case determine the catalytic properties of these systems for the CO-PROX process.  相似文献   

15.
Purification of CO and CO2 to the ppm level in H2-rich gas without losing H2 is one of the technical difficulties for fuel cell power systems. In this work, a two-column seven-step elevated temperature pressure swing system with high purification performance was proposed. The concept of reactive separation by adding water gas shift catalysts into the columns filled with elevated temperature CO2 adsorbents was adopted. The H2 recovery ratio and H2 purity were greatly improved by the introduction of steam rinse and steam purge, which could be realized due to the increasing operating temperature (200–450 °C). An optimized operating region to both achieve high efficiency and low energy consumption was proposed. The optimized case with 0.09 purge-to-feed ratio and 0.15 rinse-to-feed ratio could achieve 99.6% H2 recovery ratio and 99.9991% H2 purity at a stable state for a feed gas containing 1% CO, 1% CO2, 10% H2O, and 88% H2. No performance degradation was observed for at least 1000 cycles. The proposed (ET-PSA) system possessed self-purification ability while the columns were penetrated by CO2. It is however suggested that periodical heat regeneration should be adopted to accelerate performance recovery during long-term operation.  相似文献   

16.
As a novel and rather convenient method, ultrasonic pretreatment was employed for the preparation of nanostructured Au/MnOx-CeO2 (Mn/Ce = 1:1) catalysts which were used for CO preferential oxidation. The effects of synthesis pH (7.0-11.0) and Au loading (0.5-5.0 wt.%) on the performance of these catalysts were systematically investigated. It is found that the Au(1.0)/MnOx-CeO2-10.0 with 1.0 wt.% Au prepared at pH = 10.0 exhibits the best catalytic performance, giving not only the highest CO conversion of 90.9% but also the highest oxygen to CO2 selectivity of 47.8% at 120 °C. The results of XRD, HR-TEM and XPS indicate that this catalyst possesses the highest dispersion of Au species and the largest amount of surface adsorbed oxygen species, which facilitates CO oxidation. The H2-TPR results reveal that the selectivity of oxygen to CO2 is mainly determined by the reducibility of Au species in the catalysts. The strong interaction between Au species and the supports in the catalyst Au(1.0)/MnOx-CeO2-10.0 decreases its capability for H2 dissociation, effectively inhibiting the hydrogen spillover, as a result, the selectivity of oxygen to CO2 is remarkably increased.  相似文献   

17.
The Au/La-CeOx catalysts were prepared and tested for the PROX reaction. The effects of the support preparation method, Au loading, calcination temperature, oxygen pretreatment on the catalytic activity, and the stability test were investigated. It was found that the catalyst preparation could affect the surface area, gold particle size, and the state of gold, which are strongly related to the catalytic activity. The results indicated that the La-CeOx prepared by the NH4OH precipitation method have high activity and thermal stability. Under the stability test, the catalyst was stable, even though water was added in the feed stream up to 10%.  相似文献   

18.
CuO/CeO2, CuO/Al2O3 and CuO/CeO2-Al2O3 catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu0 is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al2O3 or CuO/CeO2-Al2O3 catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO2 despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance.  相似文献   

19.
A series of Au/CuOCeO2 catalysts were prepared by the different methods in order to investigate the promoting effect of Au on preferential oxidation of carbon monoxide. The composition, structure, elementary valence and reduction behavior of the catalysts were systematically characterized by an array of techniques. It is found that the catalyst prepared by liquid-phase reduction deposition (AuCeCu-lprd) method has the highest low-temperature activity and the widest temperature window of complete CO conversion in the as-prepared catalysts, which are attributed to high loading amount of Au, the small size of Au nanoparticles, good reducibility of the support and the presence of Au+ from Au3+ reduction on the surface. In addition, the AuCeCu-lprd catalyst displays satisfactory stability at 115 °C for 80 h and good resistence to H2O.  相似文献   

20.
Silver, cobalt and ceria mixed oxide catalysts were prepared at different metal/metal oxide molar ratios by the co-precipitation method, calcined at different temperatures (200 °C, 450 °C) and tested for the selective CO oxidation reaction in H2 rich gas stream. XRD, XPS, N2 physisorption, SEM and TPR-H2 techniques were used to characterize the catalysts. Catalysts have an average pore diameter in the mesoporous range. Catalysts which were calcined at 200 °C had amorphous phase structure. After calcination at 450 °C, not only the crystal phase structure but also decrease in BET surface areas of the catalysts and the shift at light off temperatures of the catalysts to the higher temperatures were obtained. The highest activity and selectivity was obtained from the catalysts calcined 200 °C which were 50/50 Ag–Co and 50/50 Co–Ce mixed oxide catalysts, respectively, which did not loose their activity and selectivity in a reaction period of 5800 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号