首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
污泥好氧颗粒化过程中微生物群落结构的演变与分析   总被引:2,自引:1,他引:1  
为了揭示颗粒污泥形成过程中微生物群落结构多样性的演变过程,以人工配水为进水,在SBR中采用厌氧/好氧循环的手段成功培育出具有聚磷特性的颗粒污泥,利用基于16S rDNA的PCR-DGGE技术获得了微生物群落的DNA特征指纹图谱,对条带进行了统计分析和切胶测序,并建立了系统发育树。结果表明,污泥沉降性能的改善要先于颗粒污...  相似文献   

2.
厌氧氨氧化颗粒污泥经过长期保存会逐渐解体成絮状,但目前关于保存后期的饥饿环境对不同形态污泥的影响尚缺乏深入研究。针对该问题,以饥饿15 d颗粒解体后的厌氧氨氧化絮状污泥作为接种污泥,考察了其颗粒化过程及其对于反应器启动和运行的影响,同时对比研究了絮状和颗粒状厌氧氨氧化污泥对于饥饿的响应及其活性恢复情况。结果表明:饥饿10 d后补料继续培养3个批次,厌氧氨氧化颗粒污泥反应活性的恢复速率高于絮状污泥;接种厌氧氨氧化絮状污泥80 d左右,反应器中NH_4~+-N和NO_2~--N的去除率均达到100%,160 d可以实现污泥的颗粒化。此研究结果可为利用长期保存下的种泥启动厌氧氨氧化反应器提供参考。  相似文献   

3.
污泥颗粒化快速启动厌氧氨氧化反应器的探讨   总被引:1,自引:0,他引:1  
厌氧氨氧化工艺处理成本低,被认为是有应用前景的废水脱氮技术.但是,厌氧氨氧化菌生长缓慢,厌氧氨氧化反应器启动困难.探讨了几种快速启动厌氧氨氧化反应器的方法,包括投加颗粒污泥、惰性载体、絮凝剂及多价阳离子等,并对其作用机理进行了分析.  相似文献   

4.
5.
影响好氧颗粒污泥性质的因素多且复杂,具有灰色系统的特点.应用了灰色关联分析方法对好氧颗粒污泥的重要参数污泥体积指数(SVI)、沉降速率、颗粒粒径和污泥浓度(MLSS)进行了关联影响分析.结果表明:对颗粒污泥SVI的影响顺序为沉降速率>颗粒粒径> MLSS,说明沉降速率对活性污泥的形态转变和颗粒化过程的作用最明显,SVI可作为评判颗粒化进程的一个理想指标;沉降速率对MLSS的影响最弱;颗粒粒径的最佳值为1.3~1.5 mm,此时,颗粒粒径对SVI降低的贡献最大,从而使颗粒污泥的沉降性能得到很大改善,并且使MLSS达到最大.  相似文献   

6.
为达到固液分离的目的,在SBR中将丝状菌颗粒化.研究发现,反应器中相继出现黄色、黑色和白色3种丝状菌颗粒.3种颗粒中,黑色颗粒和白色颗粒孔隙率基本一致,但黑色颗粒粒径远远大于其他2种颗粒,沉速达最大.对3种颗粒和反应器出水进行了丝状菌菌种鉴定,其中黑色颗粒以真菌为主,白色颗粒以微丝菌为主,黄色颗粒为浮球衣菌和Type0041,出水中除以上菌种外还有其他菌种,如Type0581.研究结果表明:丝状菌以弯曲、分支、不规则生长方式易形成丝状化颗粒;单一丝状菌相互缠绕形成的颗粒的强度高于多种丝状菌所形成的丝状菌颗粒.  相似文献   

7.
采用批式呼吸法求得好氧氨氧化菌产率系数为0.2119 mg COD/mg NH4 -NOD(或者0.7268 mg COD/mg NH4 -N)和氨氧化菌最大氨氮降解速率为0.1 mg NOD/(mg COD·h)(或者0.0292 mg N/(mg COD·h)).用间歇式批试验法,加入24 μmol/L NaN3抑制NO2--N氧化,建立氨氧化反应动力学方程,得到氨氮半饱和系数为18.38 mg NOD/L(或者5.36 mg NH4 -N/L),DO半饱和系数为0.494 mg/L.对比参数值表明,用一步硝化动力学来描述氨氧化反应动力学模型是错误的.  相似文献   

8.
不同污泥源厌氧氨氧化污泥的比较   总被引:5,自引:2,他引:5  
采用厌氧序批式反应器,以好氧硝化污泥和厌氧颗粒污泥为污泥源,通过对氨氮、亚硝酸盐氮、pH等指标的监测和数据分析、污泥颜色变化和菌落电镜照片的观察,研究2种不同污泥源厌氧氨氧化污泥的差异.结果表明,不同污泥源厌氧氨氧化污泥的颜色不同,污泥中具有厌氧氨氧化作用的优势菌不同;由厌氧颗粒污泥为污泥源培养出的厌氧氨氧化污泥具有较高的厌氧氨氧化活性.  相似文献   

9.
10.
厌氧氨氧化菌接种污泥的选择培养过程研究   总被引:9,自引:2,他引:9  
厌氧氨氧化菌的2种不同接种污泥培养实验表明,厌氧消化污泥和好氧硝化污泥均可成功启动厌氧氨氧化过程.接种厌氧消化污泥比好氧硝化污泥培养的厌氧氨氧化菌启动快,但后者去除效果较好.接种好氧硝化污泥的反应器的厌氧氨氧化速率随着氨氮基质进水浓度的增加呈线性增加.进水氨氮浓度为280 mg/L时的氨氮平均去除率达91%;而接种厌氧消化污泥的相应氨氮平均去除率仅为52%.厌氧氨氧化过程以接种好氧硝化污泥来启动为宜.  相似文献   

11.
为了研究污泥负荷对SBR系统内活性污泥微生物中氨氧化菌群落结构的影响,应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,对不同污泥负荷条件下SBR处理经投加葡萄糖调节的游泳馆污水的活性污泥中氨氧化菌进行了分析。研究结果表明,氨氧化菌的群落结构在不同污泥负荷条件下变化明显,在有机碳源较低的情况下生长旺盛,随着污泥负荷的提高其DGGE图谱条带数量逐渐减少,亮度逐渐减弱;在高污泥负荷环境下,氨氧化菌受到严重抑制,多样性指数大幅下降,并从系统中消失。SBR系统内氨氧化菌大部分为不可培养的变形菌,最常见的氨氧化菌是β变形菌中的亚硝化螺菌和亚硝化单细胞菌。  相似文献   

12.
分别采用两段式装置(升流式水解酸化池+SBR(R1))和一段式SBR(R2及R3)小试装置,处理实际污水(R1及R2)及人工配水(R3),考察了不同水源对好氧颗粒污泥的粒径分布、沉降性能以及微生物群落的影响。结果显示,大多数颗粒的粒径均集中在0.12~0.3 mm之间,在R1、R2及R3中的占比分别为32.78%、38.61%和50.28%。当粒径介于0.3~0.5 mm、大于0.5 mm时,R1与R2中的颗粒分配均显著高于R3中的颗粒分配。结果表明,低浓度人工配水(COD均值480 mg·L-1)易形成中等粒径的颗粒,而低浓度实际污水(COD均值173 mg·L-1)更易形成较大的颗粒。当体积交换比从90%降为50%,R1和R3的 SVI30/SVI5维持在0.85以上,R2的SVI30/SVI5出现下降的趋势,这可能是进水中较高的悬浮颗粒引起的污泥轻微膨胀所致。3个主反应器取污泥(分别记S1、S2及S3)进行高通量分析,氨氧化菌Nitrosomonas、 氨氧化古菌Nitrososphaera、 反硝化聚磷菌 Dechloromonas等脱氮除磷优势菌属在S1、S2中的相对比例明显高于在S3中的相对比例。 丝状菌方面,在有机负荷率(OLR)较低条件(0.91 kg· (m3·d)-1)下,有利于Aquaspirillum、Enhydrobacter的生长,而较高的OLR(>0.91 kg· (m3·d)-1)有利于Acinetobacter的生长。污水中多种类的有机物,不仅有利于形成致密的胞外聚合物,而且可提高脱氮除磷优势菌属在颗粒污泥中的相对比例。  相似文献   

13.
为探究高有机负荷(organic loading rate,OLR)对好氧颗粒污泥在序批式反应器(sequencing batch reactor,SBR)中的形成和稳定性能的影响及高OLR条件下微生物群落结构的特征,采用连续监测方法对运行过程中颗粒污泥形貌、水质、沉降性能以及EPS的变化进行探究。结果表明:在OLR为14.4 kg·(m3·d)−1的条件下,颗粒化进程较快,43 d完成颗粒造粒;并且高OLR引起丝状菌在颗粒表面大量附着,造成颗粒沉降性能和水质处理能力不稳定;通过改变进水中蛋白胨的占比来抑制丝状菌生长,使好氧颗粒污泥系统重新恢复稳定;在此过程中,混合液悬浮固体质量浓度(mixed liquid suspended solids,MLSS)、混合液挥发性悬浮固体质量浓度(mixed liquid volatile suspended solids,MLVSS)随OLR的增加而增加,但受丝状菌增加的影响会下降,而在丝状菌消除之后,MLSS和MLVSS恢复增长;SVI随OLR的增加不断下降,而受丝状菌增加的影响会呈现上升趋势,在丝状菌消除后,颗粒沉降性能恢复,SV30/SV5在1.0左右波动;胞外聚合物(extracellular polymeric substances,EPS)受OLR和丝状菌影响较大,尤其是紧密结合型的EPS;恢复正常的颗粒污泥可高效去除进水中的COD、NH4+-N和TN,去除率分别为91.5%、92.0%和79.4%;采用MiSeq高通量测序的方法发现高OLR下好氧颗粒污泥中去除有机物和氮的优势菌门为Saccharibacteria、BacteroidetesProteobacteria;异养硝化、好氧反硝化菌丰度较高。由此可以看出,异养硝化-好氧反硝化可能是好氧颗粒污泥的主要脱氮方式。本研究结果可为SBR系统控制好氧颗粒污泥中丝状菌的生长,维持好氧颗粒污泥稳定性提供参考。  相似文献   

14.
对高浓度氨氮污泥脱滤液进行了半硝化实验研究。运行结果表明,反应器进水氨氮浓度在402 mg/L、HRT=5.5 h、温度为22~31℃、DO〈1.0 mg/L、pH值在7.4~8.2时,半硝化反应器出水的NO 2--N/NH3-N维持在1.13~1.32,且负荷达到1.76 kg N/(m3.d),NO2--N/NOx...  相似文献   

15.
为实现高氯酸盐还原颗粒污泥的快速培养,以反硝化颗粒污泥为接种污泥,对高氯酸盐还原颗粒污泥的快速培养进行了研究。在降低进水硝酸盐($ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$)浓度的同时,采用逐步升高进水高氯酸盐($ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$)浓度的方法,考察了高氯酸盐还原颗粒污泥培养过程中$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$的去除以及颗粒污泥的特性。结果表明:以反硝化颗粒污泥为接种污泥,经过50 d快速培养出高氯酸盐还原颗粒污泥,$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$去除速率达96%以上;其混合液悬浮固体浓度(MLSS)为50.68 g·L−1,混合液挥发性固体浓度(MLVSS)为40.58 g·L−1,主要粒径分布在<0.60 mm和1.00~2.00 mm。$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$浓度逐步降低的培养方式可缓解$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$对颗粒污泥中各类微生物的毒性,为高氯酸盐颗粒污泥的快速培养提供了新的方法,具有重要的理论和实践意义。  相似文献   

16.
为确定胞外聚合物(EPS)中蛋白质(PN)对好氧颗粒污泥(AGS)形成的影响,研究了好氧污泥颗粒化过程,污泥EPS变化规律及其与污泥表面特性的相关性,分析了AGS和接种污泥EPS组分和相关官能团的差异并确定了EPS分布情况.结果 表明,在好氧污泥颗粒化期间,EPS中PN含量由13.98 mg·g-1增加到41.86 m...  相似文献   

17.
好氧污泥强化造粒过程中EPS的分布及变化规律   总被引:1,自引:0,他引:1  
通过在好氧颗粒污泥生长前期投加混凝剂的方式,考察混凝剂的投加对颗粒生长的影响,用三维荧光光谱法分析胞外多聚物(EPS)在颗粒生长过程中的变化规律及其与污泥特性的相关性。结果表明,强化造粒条件下的污泥完全颗粒化的时间比对照组提前12 d,其强度和比重也分别比对照组高出2.05%和0.032。对各形态EPS三维荧光光谱分析,发现生长期松散型胞外多聚物(LB-EPS)的峰点为溶解性微生物代谢产物,及少量的芳香蛋白类物质和腐殖酸类物质,颗粒成熟后溶解性微生物代谢产物和蛋白类物质的荧光强度均减小,腐殖酸类物质消失,而溶解型胞外多聚物(S-EPS)和紧密型胞外多聚物(TB-EPS)的峰点及强度在两阶段无明显变化。在颗粒生长过程中,LB-EPS中的蛋白质含量随颗粒生长逐渐升高,颗粒成熟后逐渐降低至稳定,而多糖含量基本保持在1~5 mg/g MLSS。与S-EPS、TB-EPS相比较,LB-EPS和污泥颗粒化有密切关系,且与SVI呈正相关性(相关系数r=0.812),与相对疏水性呈负相关性(相关系数r=-0.973)。  相似文献   

18.
在高径比120/6,结构相同的2个SBR反应器中培养好氧颗粒污泥,并以修订ASM3模型为基础进行反应过程模拟,并分析表观气速(2.0 cm·s−1和3.0 cm·s−1)对好氧污泥颗粒化过程中动力学参数的影响。结果表明,反应器运行初期(t=4 d),表观气速2.0 cm·s−1时的半饱和系数KS、基质降解动力学参数vmax、污泥衰减系数Kd、污泥比增殖速率μH和污泥的产率系数YH均大于表观气速3.0 cm·s-1时的参数值,说明微生物在表观气速2.0 cm·s−1时更易适应环境变化。然而,随着初始好氧颗粒的形成(t=10~28 d),各参数值在表观气速3.0 cm·s−1时变得更高,尤其对KS、μHKd的影响更明显。修订的ASM3可模拟好氧颗粒污泥形成过程中溶解氧DO、好氧速率OUR、COD、NH4+-N的变化,说明模型预测的可行性和有效性。反应器内表观气速不同,影响了微生物生长的各动力学参数和反应器内的流态,从而导致污泥的特性和结构发生了变化,最终使得SV30/SV5、污泥粒径、污泥密实度D2和规则程度Dpf,COD和NH4+-N等参数出现差异。本研究结果可为运用数学模型反映生物反应器中参数变化以优化反应过程提供参考。  相似文献   

19.
好氧颗粒污泥胞外多聚物的提取及成分分析   总被引:12,自引:1,他引:12  
EPS是微生物聚集体的重要组成部分,提取和分析好氧颗粒污泥的EPS利于深入研究这一新兴微生物聚集体.采用加热、超声、高速离心和加碱等5种方法提取好氧颗粒污泥的EPS,并分析其主要成分.结果表明,匀浆预处理是提取颗粒污泥EPS首要步骤,超声和加热分别适合EPS定性与定量分析,在35 w、超声4 min的条件下,活性污泥与好氧颗粒污泥EPS提取液中TOC产量分别为105.3 mg/g VSS和96.5 mg/g VSS;加热法(80℃,60 min)提取的EPS产量略高于超声法,对于活性污泥和好氧颗粒污泥,TOC含量分别为142.6 mg/g VSS和153.2 mg/g VSS;蛋白质是活性污泥和好氧颗粒污泥EPS中比例最大的成分,且蛋白与多糖在好氧颗粒污泥与其在絮状活性污泥中的比值范围分别为3.22~5.80和1.68~2.63.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号