首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的采用一步法合成Fe_3O_4@C纳米粒子,分析其核壳结构的形成机理,并研究该纳米材料在磁性防伪油墨方面的应用。方法以FeCl_3·6H_2O为铁源,乙二醇为溶剂,葡萄糖为碳源,尿素为碱源,制备具有核壳结构的Fe_3O_4@C纳米粒子,分别采用X射线衍射、场发射扫描电镜、高分辨透射电镜、红外光谱仪和激光拉曼光谱等对其表面形貌和结构进行表征,并对所制备磁性油墨的粘度、抗摩擦性、细度和磁性进行测定。结果所制备的Fe_3O_4@C纳米材料是以平均粒径18 nm的Fe_3O_4为核,厚度为2 nm的无定形碳为壳层的单分散球形纳米粒子,葡萄糖是核壳结构形成的关键;该材料在室温下具有典型的软磁特性,饱和磁化强度为71.2 A·m~(-2)/kg,矫顽力为10 984.8 A/m,所制磁性油墨的墨层耐磨性参数为81%,印记有磁性,粘度为95 Pa·s,各项性能均符合磁性防伪油墨的要求。  相似文献   

2.
Nanocomposites composed of polypyrrole (PPy), graphite nanosheets (NanoGs), magnetite (Fe3O4) nanoparticles, have been successfully synthesised with a two-step process. First, we prepared NanoGs/Fe3O4 powder via wet chemical co-precipitation method. Next, pyrrole was polymerised in the suspension of NanoGs/Fe3O4 and then PPy/NanoGs/Fe3O4 nanocomposites were produced. The products were characterised by Fourier-transform infrared spectroscopy, Transmission electron microscopy, Thermogravimetric, conductivity and magnetisation analysis. The result showed that the conductivity of the PPy/NanoGs/Fe3O4 composites, compared with pure PPy, increased dramatically. And the saturation magnetisation of nanocomposites increased with the increase of the volume fraction of the Fe3O4 particles. In addition, according to the thermal gravimetric analysis, compared with PPy, nanocomposites exhibited enhanced thermal stability due to the introduction of NanoGs/Fe3O4. The PPy/NanoGs/Fe3O4 composites show potential applications in electric–magnetic shield materials.  相似文献   

3.
康路  胡平  杨军  王华  杨帆  杜金晶  杨占林 《材料导报》2015,29(21):132-136, 144
近年来,由于磁性纳米粒子在实际应用中发挥越来越重要的作用,有关磁性纳米粒子的应用受到科学界广泛关注,特别是生物医学领域。由于磁性纳米Fe_3O_4粒子制作简单且晶体对细胞无毒,在生物医药领域大量应用,磁性纳米Fe_3O_4粒子主要通过表面包覆成为免疫磁性微球进行使用。简述了磁性纳米Fe_3O_4粒子的制备方法,重点综述了近些年磁性纳米Fe_3O_4粒子在生物医学上的应用,包括磁共振成像技术、磁分离技术、靶向药物载体技术、肿瘤热疗技术、造影剂技术,并且阐述了磁性纳米Fe_3O_4粒子的发展前景。  相似文献   

4.
Magnetic Fe3O4 nanoparticles with size below 10 nm have been prepared by the aqueous phase coprecipitation method. The Fe3O4 nanoparticles show typical superparamagnetism. Comparison is made between the dispersed sample and the powder sample, and the results are discussed.  相似文献   

5.
The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.  相似文献   

6.
采用改进的氧化沉淀法在羧甲基纤维素(CMC)溶液中制备了以磁性纳米Fe3O4为核心,外包CMC的复合磁性纳米粒子。用透射电镜、X射线衍射、红外光谱、Zeta电位和震动样品磁强计对复合粒子进行了表面形貌、结构和磁学的表征。实验结果表明,CMC-Fe3O4复合纳米粒子为反尖晶石型,平均粒径约为40 nm;CMC在Fe3O4粒子表面是化学吸附;在相同pH值下,CMC-Fe3O4的表面Zeta电位低于纯相Fe3O4;CMC-Fe3O4的饱和磁化强度为36.74 emu.g-1;CMC-Fe3O4复合粒子在土壤介质中的过滤系数约为0.03 cm-1;在10 cm土柱渗透实验中,72%的CMC-Fe3O4复合粒子悬浊液穿过了土壤介质。  相似文献   

7.
Carbonization of magnetic polymer microspheres is one of the methods for the preparation of magnetic carbon materials. Fe3O4 magnetic particle characteristics considerably influence the magnetic content and size distribution of magnetic polymer microspheres. The characteristics of Fe3O4 nanoparticles modified by oleic acid (OA) and undecylenic acid (UA) were analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, dynamic laser light scattering, thermogravimetry/differential thermogravimetry, vibrating sample magnetometer, and water contact angle. Fe3O4 nanoparticles modified by OA and UA are nearly spherical and exhibit superparamagnetism. Fe3O4 particle size and saturation magnetization are slightly influenced by the OA and UA composition. OA and UA both are chemically adsorbed onto Fe3O4 as bidentate chelates. OA shows easier adsorption onto Fe3O4 than UA. OA groups have an expanded arrangement on OA@Fe3O4, whereas UA groups have a condensed arrangement on UA@Fe3O4. Particle lipophilicity decreases and particle clustering increases with decreasing OA content and increasing UA content on OA-UA@Fe3O4 nanoparticles.  相似文献   

8.
Abstract

Preparation condition can affect the structure and the properties of nanofiber membrane. In order to explore suitable conditions to prepare the Fe3O4/PVDF nanofiber membrane with good hydrophobicity, the hydrophobicity of Fe3O4/PVDF nanofiber membranes obtained by electrospinning was investigated by changing preparation conditions like weight percentage of Fe3O4 nanoparticles, blending quality concentration of poly (vinylidene fluoride) (PVDF) and Fe3O4 nanoparticles, and positive voltage. And the variations of hydrophobicity of Fe3O4/PVDF nanofiber membranes modified by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane were studied. The results show that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has changed under different preparation conditions. The contact angles of samples increased after a modification by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane, which indicates that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has been enhanced.  相似文献   

9.
首先制备了形状记忆性良好、在热场和磁场中都可响应的SMP/Fe3O4纳米复合材料,将样品在形变固定后,储存不同时间,分别在热场和磁场中考察储存时间对SMP/Fe3O4回复性能的影响。结果显示,储存时间10min及储存时间为12h的样品的形状回复率均在95%以上,存储时间对于热场和磁场中形变回复性能的影响具有类似的规律,即:形变固定后储存时间延长,其起始回复温度升高,回复诱导期增长,回复的温度区间变宽。XRD、DSC、DMA测试结果表明,随储存时间的延长,样品的结晶度增加,样品熔点和熔融温度区间发生改变,从而引起相应的SMP/Fe3O4回复性能的变化。  相似文献   

10.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

11.
In this study, we develop an experimental procedure to synthesize hematite nanoparticles by hydrothermal decomposition of Fe-EDTA complex in the presence of hydrogen peroxide, starting from ferric ammonium sulfate and Na 4 EDTA as main precursors. The product was investigated by X-ray diffraction, scaning electron microscopy, dispersive X-ray spectroscopy, magnetic measurements, and UV-vis optical absorption measurements. The size of nanoparticles was determined to be 42 nm evaluated by XRD patterns using the Scherrer equation. This method allowed the formation of pure hematite nanoparticles with good and stable crystallographic characteristics. This procedure can be an effective method for synthesizing hematite nanoparticles exhibiting good crystallinity, stoichiometry, magnetic, and optical band gap properties. A possible mechanism for the formation of hematite nanocrystals was suggested.  相似文献   

12.
Fe3O4 based magnetic polymer nanoparticles (MPNPs) are densely studied for several decades. These Fe3O4 based MPNPs can be used in wastewater treatment and biological field such as magnetic resonance imaging contrast agents, hyperthermia therapy and protein separation. The Fe3O4 based MPNPs are attractive because they combine the advantages of magnetism and polymers together. In order to obtain the practical application in the above mentioned areas, the bare Fe3O4 needs to be functionalised with different kinds of molecules like organic small molecules and polymers and some inorganic molecules like silica, metals and carbon. In this review, the chemical preparation methods, different modification methods and various applications of the Fe3O4 based MPNPs are introduced.  相似文献   

13.
采用悬浮聚合法制备高分子聚羧酸-纳米Fe3O4磁性复合颗粒(PC-NMPs)。通过热重差热分析(TGA)、有机元素分析(EA)、原子吸收光谱(AAS)、X-射线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)、振动样品磁强计(VSM)对合成的磁性复合颗粒进行了组成、结构、形貌、磁性等表征,并研究了其吸附和去除水中对羟基苯甲酸酯类化合物(Parabens)的性能。结果表明:合成的磁性复合颗粒平均粒径为100~150 nm,饱和磁化强度为10.66 emu/g,剩余磁化强度为0.61 emu/g,矫顽力为14.96 Oe;该磁性复合颗粒对4种常用的对羟基苯甲酸酯类化合物(Parabens)的等温吸附线基本符合Langmuir模式,对羟基苯甲酸甲酯(MPB)、对羟基苯甲酸乙酯(EPB)和对羟基苯甲酸丙酯(PPB)的饱和吸附量为556 mg/g;对羟基苯甲酸丁酯(BPB)的饱和吸附量为588 mg/g。该复合颗粒能有效去除水中对羟基苯甲酸甲酯类化合物,是潜在的环境激素吸附剂和去除剂。该复合颗粒表面富含羧基可与Parabens类化合物形成氢键、苯环间存在π-π相互作用,有利于吸附过程快速有效地进行。  相似文献   

14.
Fe2O3 thin film was prepared using aqueous solution of FeCl3 by spray pyrolysis. The substrate temperature was 450°C. The lattice parametersa andc for different concentrations were calculated from X-ray diffraction study. Hexagonal structure of the Fe2O3 thin film was confirmed. Band gap values of Fe2O3 prepared from different concentrations were determined from optical transmission data.  相似文献   

15.
Development of highly active photocatalysts for treatment of dye-laden wastewaters is vital. The photocatalytic removal of azo dye Reactive Black 5 was investigated by Fe3O4-WO3-3-aminopropyltriethoxysilane (APTES) nanoparticles in the presence of visible light. The Fe3O4-WO3-APTES nanoparticles were synthesized via a facile coprecipitation method. The photocatalyst was characterized by XRD, FT-IR, SEM, EDX, VSM, UV–Vis, and pHPZC techniques. The effects of some operational parameters such as solution pH, nanophotocatalyst dosage, initial RB5 concentration, H2O2 concentration, different purging gases, and type of organic compounds on the removal efficiency were studied by the Fe3O4-WO3-APTES nanoparticles as a photocatalyst. Maximum phtocatalytic activity was obtained at pH 3. The photocatalytic removal of RB5 increased with increasing H2O2 concentration up to 5?mM. The removal efficiency declined in the presence of different purging gases and all types of organic compounds. First-order rate constant (kobs) decreased from 0.027 to 0.0022?min?1 and electrical energy per order (EEo) increased from 21.33 to 261.82 (kWh/m3) with increasing RB5 concentration from 10 to 100?mg/L, respectively. The efficiency of LED/Fe3O4-WO3-APTES process for RB5 removal was approximately 89.9%, which was more effective than the LED/Fe3O4-WO3 process (60.72%). Also, photocatalytic activity decreased after five successive cycles.  相似文献   

16.
The presence of Fe(3)O(4)-CoO/Al(2)O(3) can improve degradation efficiency significantly during the ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The main factors affecting degradation efficiency, such as pH, the catalyst concentration and addition of the scavenger, were investigated. The kinetics of the catalytic ozonation are also discussed. The results indicate that two factors, the oxidation after adsorption of 2,4-DP and the oxidation of hydroxyl radicals (OH), lead to a great enhancement in ozonation efficiency during the catalytic ozonation of 2,4-DP in the presence of Fe(3)O(4)-CoO/Al(2)O(3), in which the oxidation of the OH plays an important role. Under controlled conditions, the apparent reaction rate constants for the degradation of 2,4-DP were determined to be 2.567 × 10(-4)s(-1) for O(3) and 1.840 × 10(-3)s(-1) for O(3)/Fe(3)O(4)-CoO/Al(2)O(3). The results from the analysis of the reaction kinetics using the relative method showed that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) possessed a larger R(ct) (R(ct) is defined as the ratio of the ·OH exposure to the O(3) exposure, R(ct) = ∫C(t)(OH) dt/C(t)O(3)dt) than O(3), indicating that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) produced more hydroxyl radicals.  相似文献   

17.
董丽  董桂霞  张茜 《材料导报》2016,30(10):47-50
采用固相法制备0.93MgTiO3-0.07CaTiO3-xFe_2O_3(摩尔分数x=0.01~0.025)微波介质陶瓷材料,研究添加Fe_2O_3后,体系的晶体结构、显微结构和微波介电性能之间的变化规律。利用XRD、SEM、网络分析仪对样品的相组成、微观结构、介电性能进行测试分析。研究表明:该复合陶瓷样品的致密度、介电常数和Q·f值随Fe_2O_3含量的增加先增大后减小。当x(Fe_2O_3)为0.015,在1290℃烧结4h时,获得最优的介电性能:εr=21.32,Q·f=37448GHz,τf=0.577×10-6/℃。  相似文献   

18.
Production of magnetite (nano-Fe3O4)-coated carbon fibers (MCCFs) composites using the electrophoretic deposition (EPD) technique has been investigated in the present research. Fe3O4 nano-powder was synthesized by the reduction of Fe (III)-tri-ethanolamine (TEA) in an aqueous alkaline solution. By the deposition of nano-Fe3O4 particles distributed stably in a suspension on the surface, a uniform and compact Fe3O4 thin-film was fabricated on nitric acid-treated carbon fiber. According to the results, the strongest reflection loss (RL) of MCCFs was recognized to be ?11 dB at 10.37 and 11.4 GHz for a layer of 1.7 mm in thickness. EPD was introduced as a suitable method for the production of MCCFs due to its low cost, easy productivity and time efficiency as well as the high absorption properties of the resulting MCCFs compared with the previous reported works.  相似文献   

19.
The surface of hollow glass spheres was deposited with a layer of Fe3O4 film in the open air without using ultrasound and toxic reducing reagent NaNO2; the magnetic films of Fe3O4 were characterized by XRD, SEM and EDS. The intactness of the films was remarkably affected by temperature; it is favorable for the hollow glass spheres to be encapsulated completely by the Fe3O4 magnetic films as plating temperature increased at pH 6.7. The films exhibited ferromagnetic behavior.  相似文献   

20.
Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts, using only Yb2O3 as an additive, at 1900 °C under a nitrogen pressure of 1 MPa. The effects of Yb2O3 content, sample packing condition and sintering time on the densification, microstructure and thermal conductivity were investigated. Curves of the density plotted against the Yb2O3 content exhibited a characteristic ‘N’ shape with a local minimum at 3 mol% Yb2O3 and nearly complete densification below and above this concentration. The effects of the sample packing condition on the densification, microstructure and thermal conductivity strongly depended on the Yb2O3 content. The embedded condition led to more complete densification but also to a decrease in thermal conductivity from 119 to 94 W m-1 K−1 upon 1 mol% Yb2O3 addition. The sample packing condition had little effect on the density and thermal conductivity (102–106 W m−1 K−1) at 7 mol% Yb2O3. The thermal conductivity value was strongly related to the microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号