首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
microRNAs (miRNAs) function as genetic rheostats to control gene output. Based on their role as modulators, it has been postulated that miRNAs canalize development and provide genetic robustness. Here, we uncover a previously unidentified regulatory layer of chemokine signaling by miRNAs that confers genetic robustness on primordial germ cell (PGC) migration. In zebrafish, PGCs are guided to the gonad by the ligand Sdf1a, which is regulated by the sequestration receptor Cxcr7b. We find that miR-430 regulates sdf1a and cxcr7 mRNAs. Using target protectors, we demonstrate that miR-430-mediated regulation of endogenous sdf1a (also known as cxcl12a) and cxcr7b (i) facilitates dynamic expression of sdf1a by clearing its mRNA from previous expression domains, (ii) modulates the levels of the decoy receptor Cxcr7b to avoid excessive depletion of Sdf1a and (iii) buffers against variation in gene dosage of chemokine signaling components to ensure accurate PGC migration. Our results indicate that losing miRNA-mediated regulation can expose otherwise buffered genetic lesions leading to developmental defects.  相似文献   

2.
3.
MicroRNAs (miRNAs) are a class of short ( approximately 22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA expression patterns in mouse embryos. We elucidate the tissue-specific expression of several miRNAs during embryogenesis, including two encoded by genes embedded in homeobox (Hox) clusters, miR-10a and miR-196a. These two miRNAs are expressed in patterns that are markedly reminiscent of those of Hox genes. Furthermore, miR-196a negatively regulates Hoxb8, indicating that its restricted expression pattern probably reflects a role in the patterning function of the Hox complex.  相似文献   

4.
5.
The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer.  相似文献   

6.
MicroRNAs (miRNAs) are key regulators of gene expression in animals and plants. Studies in a variety of model organisms show that miRNAs modulate developmental processes. To our knowledge, the only hereditary condition known to be caused by a miRNA is a form of adult-onset non-syndromic deafness, and no miRNA mutation has yet been found to be responsible for any developmental defect in humans. Here we report the identification of germline hemizygous deletions of MIR17HG, encoding the miR-17~92 polycistronic miRNA cluster, in individuals with microcephaly, short stature and digital abnormalities. We demonstrate that haploinsufficiency of miR-17~92 is responsible for these developmental abnormalities by showing that mice harboring targeted deletion of the miR-17~92 cluster phenocopy several key features of the affected humans. These findings identify a regulatory function for miR-17~92 in growth and skeletal development and represent the first example of an miRNA gene responsible for a syndromic developmental defect in humans.  相似文献   

7.
The vertebrate planar cell polarity (PCP) pathway has previously been found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP effectors inturned (in) or fuzzy (fy) affected not only PCP-dependent convergent extension but also elicited embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins govern apical actin assembly and thus control the orientation, but not assembly, of ciliary microtubules. Finally, accumulation of Dishevelled and Inturned near the basal apparatus of cilia suggests that these proteins function in a common pathway with core PCP components to regulate ciliogenesis. Together, these data highlight the interrelationships between cell polarity, cellular morphogenesis, signal transduction and cell fate specification.  相似文献   

8.
9.
During embryogenesis, multipotent progenitors within the single-layered surface epithelium differentiate to form the epidermis and its appendages. Here, we show that microRNAs (miRNAs) have an essential role in orchestrating these events. We cloned more than 100 miRNAs from skin and show that epidermis and hair follicles differentially express discrete miRNA families. To explore the functional significance of this finding, we conditionally targeted Dicer1 gene ablation in embryonic skin progenitors. Within the first week after loss of miRNA expression, cell fate specification and differentiation were not markedly impaired, and in the interfollicular epidermis, apoptosis was not markedly increased. Notably, however, developing hair germs evaginate rather than invaginate, thereby perturbing the epidermal organization. Here we characterize miRNAs in skin, the existence of which was hitherto unappreciated, and demonstrate their differential expression and importance in the morphogenesis of epithelial tissues within this vital organ.  相似文献   

10.
Wnt signaling defines the colonic epithelial progenitor cell phenotype, and mutations in the gene adenomatous polyposis coli (APC) that activate the Wnt pathway cause the familial adenomatous polyposis coli (FAP) syndrome and most sporadic colon cancers. The mechanisms that regulate the transition of epithelial precursor cells into their differentiated derivatives are poorly characterized. We report that Indian hedgehog (Ihh) is expressed by mature colonocytes and regulates their differentiation in vitro and in vivo. Hedgehog (Hh) signaling restricts the expression of Wnt targets to the base of the colonic crypt in vivo, and transfection of Ihh into colon cancer cells leads to a downregulation of both components of the nuclear TCF4-beta-catenin complex and abrogates endogenous Wnt signaling in vitro. In turn, expression of Ihh is downregulated in polyps of individuals with FAP and expression of doxycycline-inducible dominant negative TCF4 (dnTCF4) restores Ihh expression in APC mutant DLD-1 colon cancer cells. These data identify a new Wnt-Hh axis in colonic epithelial renewal.  相似文献   

11.
12.
Target mimicry provides a new mechanism for regulation of microRNA activity   总被引:21,自引:0,他引:21  
MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.  相似文献   

13.
MicroRNAs can generate thresholds in target gene expression   总被引:2,自引:0,他引:2  
MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.  相似文献   

14.
Lgr5 marks cycling, yet long-lived, hair follicle stem cells   总被引:1,自引:0,他引:1  
In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair follicles. Here we show that Lgr5(+) cells comprise an actively proliferating and multipotent stem cell population able to give rise to new hair follicles and maintain all cell lineages of the hair follicle over long periods of time. Lgr5(+) progeny repopulate other stem cell compartments in the hair follicle, supporting the existence of a stem or progenitor cell hierarchy. By marking Lgr5(+) cells during trafficking through the lower outer root sheath, we show that these cells retain stem cell properties and contribute to hair follicle growth during the next anagen. Expression analysis suggests involvement of autocrine Hedgehog signaling in maintaining the Lgr5(+) stem cell population.  相似文献   

15.
16.
17.
18.
Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant.  相似文献   

19.
Mutations in SUFU predispose to medulloblastoma   总被引:8,自引:0,他引:8  
Enchondromas are common benign cartilage tumors of bone. They can occur as solitary lesions or as multiple lesions in enchondromatosis (Ollier and Maffucci diseases). Clinical problems caused by enchondromas include skeletal deformity and the potential for malignant change to chondrosarcoma. The extent of skeletal involvement is variable in enchondromatosis and may include dysplasia that is not directly attributable to enchondromas. Enchondromatosis is rare, obvious inheritance of the condition is unusual and no candidate loci have been identified. Enchondromas are usually in close proximity to, or in continuity with, growth-plate cartilage. Consequently, they may result from abnormal regulation of proliferation and terminal differentiation of chondrocytes in the adjoining growth plate. In normal growth plates, differentiation of proliferative chondrocytes to post-mitotic hypertrophic chondrocytes is regulated in part by a tightly coupled signaling relay involving parathyroid hormone related protein (PTHrP) and Indian hedgehog (IHH). PTHrP delays the hypertrophic differentiation of proliferating chondrocytes, whereas IHH promotes chondrocyte proliferation. We identified a mutant PTH/PTHrP type I receptor (PTHR1) in human enchondromatosis that signals abnormally in vitro and causes enchondroma-like lesions in transgenic mice. The mutant receptor constitutively activates Hedgehog signaling, and excessive Hedgehog signaling is sufficient to cause formation of enchondroma-like lesions.  相似文献   

20.
Smith-Lemli-Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号