首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
随着第三代半导体GaN器件技术的不断发展,GaN高电子迁移率晶体管(HEMT)功率器件在电子系统中逐步得到了广泛应用。GaN功率器件具有工作效率高、功率密度大和击穿场强高的特点,非常适合用于大功率、连续波功率放大器设计。基于GaN功率器件大信号模型,采用Microwave Office 2009微波设计软件对功率放大器进行仿真优化,设计并研制出了C波段高效率30 W连续波功率放大器。该放大器功率器件采用了CREE公司C波段GaN HEMT功率器件,实现放大器尺寸为190 mm×50 mm×15 mm,端口阻抗为50Ω。放大器在5 650~5 950 MHz频带内、28 V工作条件下,连续波输出功率大于30 W,增益大于45 dB,效率大于30%。  相似文献   

2.
一种S波段宽带GaN放大器的设计   总被引:1,自引:1,他引:0  
氮化镓功率管的宽带隙、高击穿电场等特点,使其具有带宽宽,高效特性等优点。为了研究GaN功率放大器的特点,使用了AgilentADS等仿真软件,进行电路仿真设计,设计制作了一种s波段宽带GaN功率放大器。详述了电路仿真过程,并对设计的宽带GaN功率放大器进行测试,通过测试的实验数据表明,设计的宽带放大器在s波段宽带内可实现功率超过44dBm的功率输出,验证了GaN功率放大器具有宽带的特点。  相似文献   

3.
突破了GaN MMIC功率放大器的设计、制造、测试等关键技术,研制成功X波段GaN MMIC功率放大器。设计及优化了电路拓扑结构及电路参数,放大器芯片采用了国产外延材料及标准芯片制作工艺。单片功率放大器包含两级放大电路,采用了功率分配及合成匹配电路,输入输出阻抗均为50Ω。制作了微波测试载体及夹具,最终实现了X波段GaN MMIC功率放大器微波参数测试。在8.7~10.9 GHz频率范围内,该功率放大器输出功率大于16 W,功率增益大于14 dB,增益波动小于0.4 dB,输入驻波比小于2∶1,功率附加效率大于40%,带内效率最高达52%。  相似文献   

4.
介绍了一种S波段150W GaN内匹配功率放大器。器件采用0.25μm工艺GaN HEMT管芯,内匹配技术对单胞放大器进行输入输出匹配,然后用Wilkinson功率分配器对四路单胞功率放大器进行功率合成。放大器频带范围2.7~3.5GHz。工作电压28V,占空比10%,脉宽0.1ms。单胞放大器输入功率37dBm,输出功率46.5dBm以上,功率附加效率大于50%;合成放大器输入功率43dBm,输出功率51.8dBm(150 W)以上,功率附加效率超过40%。  相似文献   

5.
基于Si衬底AlGaN/GaN HEMT器件的功率放大器链是下一代S波段相控阵雷达T/R组件的核心部分。研制的S波段放大器链主要由驱动放大器和功率放大器组成,驱动放大器与功率放大器都是基于Si衬底AlGaN/GaN HEMT器件的混合集成电路。基于混合集成电路的放大器链获得了高的输出峰值功率和附加功率(PAE),整个放大器链输出功率在800 MHz频率范围内大于20 W,附加效率(PAE)大于50%。  相似文献   

6.
基于南京电子器件研究所0.25μm GaN HEMT工艺平台,设计了一款0.3~2.0GHz 100 W GaN超宽带功率放大器。GaN HEMT器件的射频参数由负载牵引系统测定,包括最大功率匹配阻抗和最大效率匹配阻抗。放大器用同轴巴伦结构实现超宽带匹配,用高介电常数介质板材制作匹配电路,实现放大器的小型化。放大器偏置电压28V,偏置电流0.5A。测试结果显示,在0.3~2GHz带宽内,放大器小信号增益平坦度小于±1.3dB。典型输出功率大于100 W,最小输出功率90 W,饱和功率增益大于9dB,功率平坦度小于±1.2dB,漏极效率大于50%。  相似文献   

7.
罗虎存  刘鹏 《现代导航》2020,11(1):68-72
本文基于全国产器件,实现了一款小型L波段2000W脉冲功率放大器.给出了该功率放大器的关键技术设计方案和测试结果,讨论了GaN功率放大器负压保护和平衡式功率合成的实现方案.该放大器结构上进行双层腔体设计,具有体积小、效率高、可靠性好的特点.  相似文献   

8.
随着GaN功率放大器向小型化、大功率发展,其热耗不断增加,散热问题已成为制约功率器件性能提升的重要因素。金刚石热导率高达2 000 W/(m·K),是一种极具竞争力的新型散热材料,可用作大功率器件的封装载片。采用不同载片材料对一款热耗为53 W的GaN功率放大器进行封装。分别采用有限元仿真及红外热成像仪对放大器的芯片结温进行仿真和测试,结果显示,采用金刚石载片封装的放大器的结温比采用钼铜(MoCu30)载片封装的放大器的结温降低了30.01℃,约18.69%。同其他常用载片材料进行进一步对比得出,在相同工作条件下,采用金刚石载片封装的放大器结温最低,并且随着热耗增加,金刚石的散热能力更为突出。在芯片安全工作温度175℃以下,金刚石能满足GaN功率放大器100 W热耗的散热需求。  相似文献   

9.
基于大信号模型的L波段400W高效GaN功率放大器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
文章阐述了用精确的GaN Angelov模型设计了一款L波段400W内匹配率放大器.选用SiC衬底的GaN器件是为了获得大功率输出以及高效率性能.为了精确设计放大器,采用脉冲I-V测试和多偏置的S参数测试建立起高压GaN大信号模型.采用模型设计的GaN放大器输入输出电路集成在17.4mm×24mm的封装管壳里.最终采用单枚55mm栅宽GaN管芯设计的放大器在48V漏压,100μs脉宽,10%占空比偏置下在1.2~1.4GHz输出功率大于400W,功率增益大于15dB,最高功率附加效率达到81.3%,这是国内L波段400W微波功率放大器的最高效率报道,验证了模型的准确度,实现了极好的电路性能.  相似文献   

10.
介绍了一种新研制的W频段固态GaN功率放大器毫米波源,给出了系统组成与工作原理,提供了其主要部件W频段固态Gunn驱动源、W频段波导-微带转换器、主放大器芯片基本性能及实验测试结果。该固态毫米波源工作频率94 GHz,输出连续波功率大于300 mW,线性增益10 dB,附加效率(PAE)大于16%。在W频段固态毫米波源研制过程中,其单片微波集成电路(MMIC)功率放大器半导体材料选择经历了GaAs、InP到GaN演变,结果清楚表明, W频段毫米波源的GaN MMlC功率放大器输出功率、增益、效率、高温性能要优于其他固态MMIC功率放大器性能。 W频段大功率固态GaN MMlC技术将在毫米波领域带来新的技术革命和应用。  相似文献   

11.
氮化镓(GaN)作为新一代半导体材料,具有高功率容量和高热容性等特点,所以GaN微波功率器件成为近几年研究的热点。随着GaN功放管的功率不断提高,以氮化镓(GaN)为基础的微波功率器件的应用取得了很大的进步。本文对氮化镓(GaN)功率器件的特点和现状进行了介绍,并对X波段50W GaN功放管的电路设计、影响电路的因素进行了分析和研究。最后完成了一个X波段50W固态功放的设计,并给出了测试结果。  相似文献   

12.
正We report a high power Ku band internally matched power amplifier(IMPA) with high power added efficiency(PAE) using 0.3μm AlGaN/GaN high electron mobility transistors(HEMTs) on 6H-SiC substrate.The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm.To improve the bandwidth of the amplifier,a T type pre-matching network is used at the input and output circuits,respectively.After optimization by a three-dimensional electromagnetic(3D-EM) simulator,the amplifier demonstrates a maximum output power of 42.5 dBm(17.8 W),PAE of 30%to 36.4%and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10%duty cycle pulse condition when operated at V_(ds) = 30 V and V_(gs)=—4 V.At such a power level and PAE,the amplifier exhibits a power density of 4.45 W/mm.  相似文献   

13.
近年来在无线通信、雷达等领域,对发射的功耗要求越来越苛刻,而产品可放置的空间越来越小,这就要求功率放大器要有更高的效率以及更高的工作结温,新一代宽禁带半导体材料GaN能够满足该要求。基于CREE公司的GaN功放管CGH40045研制了一款S频段的功率放大器,主要进行了功率匹配、散热考虑、杂散抑制的设计。最终的测试结果显示,在300 MHz的带宽内功率增益≥50 dB,饱和输出功率≥46 dBm,工作效率≥50%,比之前采用的工作效率为30%的GaAs功率放大器有了显著的提高。可见在今后的通信系统中,基于新一代半导体材料GaN的功率放大器有着非常好的应用前景。  相似文献   

14.
A 13.56-MHz class-E amplifier with a high-voltage GaN HEMT as the main switching device is demonstrated to show the possibility of using GaN HEMTs in high-frequency switching power applications such as RF power-supply applications. The 380-V/1.9-A GaN power HEMT was designed and fabricated for high-voltage power-electronics applications. The demonstrated circuit achieved the output power of 13.4 W and the power efficiency of 91% under a drain-peak voltage as high as 330 V. This result shows that high-voltage GaN devices are suitable for high-frequency switching applications under high dc input voltages of over 100 V.  相似文献   

15.
提出了一种基于BB180波导电桥合成器与波导微带双探针相结合的Ku波段高效空间合成方案,波导合成实现了高效率,波导微带双探针结构实现功率模块的叠层安装,在Ku波段通过二者的结合实现了高功率密度。首先利用HFSS软件分析波导合成器和波导微带双探针模型,给出了仿真结果。在工程设计中采用GaN功率芯片构成放大器小模块单元,输出峰值功率25W。功放采用8个模块单元合成,在Ku波段合成饱和输出180W峰值功率(19%占空比),合成效率超过85%,附加效率高于25%,功率密度达到0.135W/cm3,实现了Ku波段微波高效合成与高功率密度输出。  相似文献   

16.
Ku波段宽带氮化镓功率放大器MMIC   总被引:1,自引:0,他引:1       下载免费PDF全文
余旭明  洪伟  王维波  张斌 《电子学报》2015,43(9):1859-1863
基于0.25μm栅长GaN HEMT工艺,采用三级放大拓扑结构设计了一款Ku波段GaN功率放大器.放大器设计从建立大信号模型出发,输出匹配网络和级间匹配网络均采用电抗匹配减小电路的损耗,从而提高整体放大器的功率效率.测试结果表明,该放大器在14.6~18GHz频带内,小信号增益30dB,脉冲饱和输出功率达15W,功率附加效率(PAE)大于32%;在14.8GHz频点处,放大器的峰值功率达19.5W,PAE达39%.该结果表明GaN MMIC具有高频高功率高效率的优势,具有广阔的应用前景.  相似文献   

17.
A 40 W gallium-nitride microwave Doherty power amplifier for WCDMA repeater applications is presented. The main amplifier and peaking amplifier are implemented using two 20 W PEP GaN HEMTs. Performance is evaluated for broadband gain, power efficiency and adjacent-channel-power-ratio (ACPR). Experimental results of the GaN Doherty amplifier yielded a power gain of over 11 dB from 1.8 to 2.5 GHz, 68% power added efficiency at 40 W peak power. Good linearity performance of -48 dBc ACPR is obtained at a peak-to-average ratio of 9.8 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号