首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we propose a novel approach to authentication and privacy in mobile RFID systems based on quadratic residues and in conformance to EPC Class-1 Gen-2 specifications. Recently, Chen et al. (2008) [10] and Yeh et al. (2011) [11] have both proposed authentication schemes for RFID systems based on quadratic residues. However, these schemes are not suitable for implementation on low-cost passive RFID tags as they require the implementation of hash functions on the tags. Consequently, both of these current methods do not conform to the EPC Class-1 Gen-2 standard for passive RFID tags which from a security perspective requires tags to only implement cyclic redundancy checks (CRC) and pseudo-random number generators (PRNG) leaving about 2.5k–5k gates available for any other security operations. Further, due to secure channel assumptions both schemes are not suited for mobile/wireless reader applications. We present the collaborative authentication scheme suitable for mobile/wireless reader RFID systems where the security of the server–reader channel cannot be guaranteed. Our schemes achieves authentication of the tag, reader and back-end server in the RFID system and protects the privacy of the communication without the need for tags to implement expensive hash functions. Our scheme is the first quadratic residues based scheme to achieve compliance to EPC Class-1 Gen-2 specifications. Through detailed security analysis we show that the collaborative authentication scheme achieves the required security properties of tag anonymity, reader anonymity, reader privacy, tag untraceability and forward secrecy. In addition, it is resistant to replay, impersonation and desynchronisation attacks. We also show through strand space analysis that the proposed approach achieves the required properties of agreement, originality and secrecy between the tag and the server.  相似文献   

2.
A secure key agreement scheme plays a major role in protecting communications between the users using voice over internet protocol over a public network like the internet. In this paper we present a strong security authenticated key agreement scheme for session initiation protocol (SIP) by using biometrics, passwords and smart cards. The proposed scheme realizes biometric data protection through key agreement process meanwhile achieving the verification of the biometric value on the SIP server side which is very important in designing a practical authenticated key agreement for SIP. The main merits of our proposed scheme are: (1) the SIP server does not need to maintain any password or verification table; (2) the scheme can provide user identity protection—the user’s real identity is protected by a secure symmetric encryption algorithm and the elliptic curve discrete logarithm problem, and it is transmitted in code; (3) the scheme can preserve the privacy of the user’s biometric data while the biometric matching algorithm is performed at the SIP server side, even if the server does not know the biometric data in the authentication process. Performance and security analysis shows that our proposed scheme increases efficiency significantly in comparison with other related schemes.  相似文献   

3.
Radio frequency identification (RFID) is a wireless technology used in various applications to minimize the complexity of everyday life. However, it opens a large number of security and privacy issues that require to be addressed before its successful deployment. Many RFID authentication protocols are proposed in recent years to address security and privacy issues, and most of them are based on lightweight cryptographic techniques such as pseudo-random number generators (PRNGs), or bitwise logical operations. However, the existing RFID authentication protocols suffer from security weaknesses, and cannot solve most of the security and privacy problems. A new solution is necessary to address security and privacy issues. In this paper, an improved three-pass mutual authentication protocol (ITPMAP) for low-cost RFID tags is proposed to offer an adequate security level for RFID systems. The proposed ITPMAP protocol uses one PRNG on the tag side and heavy-weighted cryptographic techniques (i.e., digital signature and password-based encryption schemes) on the back-end server side instead of lightweight cryptographic techniques to address the security and privacy issues. The ITPMAP protocol is secure against various attacks such as cloning, spoofing, replay, and desynchronization attacks. Furthermore, as a proof of concept, the ITPMAP protocol is adopted to propose the design of three real-life RFID systems; namely: Signing and Verification of Graduation Certificate System, issuing and verification of e-ticketing system, and charging and discharging of prepaid card system. The Unified Modeling Language is used to demonstrate the design of the proposed ITPMAP protocol and systems. Java language is used for the implementation of the proposed systems. In addition, the “Mifare Classic” tags and readers are used as RFID apparatuses for the proposed systems.  相似文献   

4.
One of the recent realms that gathered attention of researchers is the security issues of Radio Frequency Identification (RFID) systems that have tradeoff between controlled costs and improved efficiency. Evolvement and benefits of RFID technology signifies that it can be low-cost, efficient and secured solution to many pervasive applications. But RFID technology will not intermingle into human lives until prevailing and flexible privacy mechanisms are conceived. However, ensuring strong privacy has been an enormous challenge due to extremely inadequate computational storage of typical RFID tags. So in order to relieve tags from responsibility, privacy protection and security assurance was guaranteed by central server. In this paper, we suggest serverless, forward secure and untraceable authentication protocol for RFID tags. This authentication protocol safeguards both tag and reader against almost all major attacks without the intervention of server. Though it is very critical to guarantee untraceability and scalability simultaneously, here we are proposing a scheme to make our protocol more scalable via ownership transfer. To the best of our knowledge this feature is incorporated in the serverless system for the first time in pervasive environments. One extension of RFID authentication is RFID tag searching, which has not been given much attention so far. But we firmly believe that in near future tag searching will be a significant issue RFID based pervasive systems. So in this paper we propose a serverless RFID tag searching protocol in pervasive environments. This protocol can search a particular tag efficiently without server’s intervention. Furthermore they are secured against major security threats.  相似文献   

5.
Debiao He 《Ad hoc Networks》2012,10(6):1009-1016
With the continue evaluation of mobile devices in terms of the capabilities and services, security concerns increase dramatically. To provide secured communication in mobile client–server environment, many user authentication protocols from pairings have been proposed. In 2009, Goriparthi et al. proposed a new user authentication scheme for mobile client–server environment. In 2010, Wu et al. demonstrated that Goriparthi et al.’s protocol fails to provide mutual authentication and key agreement between the client and the server. To improve security, Wu et al. proposed an improved protocol and demonstrated that their protocol is provably secure in random oracle model. Based on Wu et al.’s work, Yoon et al. proposed another scheme to improve performance. However, their scheme just reduces one hash function operation at the both of client side and the server side. In this paper, we present a new user authentication and key agreement protocol using bilinear pairings for mobile client–server environment. Performance analysis shows that our protocol has better performance than Wu et al.’s protocol and Yoon et al.’s protocol. Then our protocol is more suited for mobile client–server environment. Security analysis is also given to demonstrate that our proposed protocol is provably secure against previous attacks.  相似文献   

6.
一种轻量级RFID相互认证协议   总被引:1,自引:0,他引:1  
针对射频识别系统中存在的用户安全、隐私等问题,文章提出一种轻量级密码学的安全认证协议。该协议利用Hash函数的单向性和递增的时间戳,较好地解决了RFID的安全隐私问题。通过对比说明该协议具有很好的安全性和高效性。  相似文献   

7.
One of the key problems in radio frequency identification (RFID) is security and privacy. Many RFID authentication protocols have been proposed to preserve security and privacy of the system. Nevertheless, most of these protocols are analyzed and it is shown that they cannot provide security against some RFID attacks. Strong authentication and strong integrity (SASI) is the first ultra-lightweight authentication protocol introduced rotation shift operation and RFID authentication protocol with permutation (RAPP) is a new ultra-lightweight authentication protocol with permutation. In this paper, we give the security analysis on these two protocols. An active attack is presented on RAPP, and using the property of the left rotation and permutation operations, we can deduce the relationship of bits of random number or secret keys at different positions, thus obtain all the secrets shared by the reader and the tag. A passive full-disclosure attack is proposed on SASI. Using SASI’s construction weakness, our attack can reveal all the secrets shared by the reader and tag by eavesdropping about 48 rounds of the authentication messages.  相似文献   

8.
RFID系统中有限的标签芯片资源,导致数据与信息的安全成为RFID系统的重要问题之一,散列函数的单向性为RFID的识别和认证提供了一种既可靠又有效的途径.在分析了现有几种典型散列认证协议的基础上,提出了一种新的基于散列函数的安全认证协议.本协议旨在解决手持式、无线连接的RFID阅读器与标签、服务器间的识别,利用散列函数实现服务器、阅读器以及电子标签三者之间的相互认证.经过安全性与性能的分析,新协议在采用较小的存储空间和较低的运算开销的情况下,可抵抗已知的大多数攻击,有效地保证了RFID系统中数据和隐私的安全,实现了终端与服务器间的双向认证和匿名认证,非常适合于在大型分布式系统中使用.  相似文献   

9.
针对传统的RFID认证协议通常难以适应移动RFID系统的问题,提出了基于Edwards曲线的适用于移动RFID系统的安全认证协议,协议采用Edwards曲线提高了其防侧信道攻击的能力,并应用椭圆曲线离散对数问题实现安全认证。进一步采用可证明安全方法给出了标签和阅读器不可跟踪隐私的安全性证明,通过安全性分析指出协议能更有效抵抗已有各种攻击。与现有的结构类似RFID认证协议相比,该协议扩展性更好,安全性和性能优于其他方案。  相似文献   

10.
Security and privacy issues in RFID technology gain tremendous popularity recently. However, existing work on RFID authentication problems always make assumptions such as (1) hash function can be fully employed in designing RFID protocols; (2) channels between readers and server are always secure. The first assumption is not suitable for EPC Class-1 Gen-2 tags, which has been challenged in many research work, while the second one cannot be directly adopted in mobile RFID applications where wireless channels between readers and server are always insecure. To solve these problems, in this paper, we propose a novel ultralightweight and privacy-preserving authentication protocol for mobile RFID systems. We only use bitwise XOR, and several special constructed pseudo-random number generators to achieve our aims in the insecure mobile RFID environment. We use GNY logic to prove the security correctness of our proposed protocol. The security and privacy analysis show that our protocol can provide several privacy properties and avoid suffering from a number of attacks, including tag anonymity, tag location privacy, reader privacy, forward secrecy, and mutual authentication, replay attack, desynchronization attack etc. We implement our protocol and compare several parameters with existing work, the evaluation results indicate us that our protocol significantly improves the system performance.  相似文献   

11.
射频识别系统中安全认证协议的研究   总被引:1,自引:0,他引:1  
射频识别安全认证协议主要解决阅读器与应答器之间的互相认证问题。应答器需要确认阅读器的身份,防止存储数据未被认可地读出或重写;而阅读器也应确认应答器的身份,以防止假冒和读入伪造数据。目前射频识别系统主要面临着窃听隐私、重放攻击、前向安全性、同步性破坏、位置跟踪及所有权转移等安全隐患,通过对阅读器和应答器ID地址的认证来加强安全认证协议,抵抗目前已知的威胁攻击,能很好地解决射频识别系统中的主要安全问题。  相似文献   

12.
张学军  王玉  王锁萍  孙知信 《电子学报》2012,40(11):2270-2275
 安全隐私是射频识别系统的关键问题,该文在轻量型相互认证协议的基础上,根据阅读器产生的随机数对将要传送的信息进行循环左移,提出了基于循环移位的轻量型相互认证协议(CSLMAP协议),并用GNY逻辑对协议的安全性进行了证明.结果显示,所提出的CSLMAP协议解决了轻量型相互认证协议中的安全隐私问题,提高了认证协议的执行效率,降低了标签的应用成本.  相似文献   

13.
Deduplication is widely used in cloud storage service to save bandwidth and storage resources,however,the security of client deduplication still flaws in an external attack to access a user’s private data.Xu-CDE,a deduplication solution of encrypting data for multi-client was first proposed,which could protect the privacy of data from the external attackers and honest but curious server,with favorable theoretical meaning and representativeness.However,in Xu-CDE,the user ownership authentication credentials were lack of instantaneity protection,which could not resist replay attack.As an improvement to the flaw,the protocol MRN-CDE (MLE based and random number modified client-side deduplication of encrypted data in cloud storage) was proposed,adding random number in order to ensure the instantaneity of the authentication credentials,and using the algorithm of MLE-KPto extract key from original file to replace the file itself as an encryption key.As a consequence,the new protocol improved security while significantly reduced the amount of computation.After the safety analysis and the actual tests,results show that based on Xu-CDE,the proposed protocol MRN-CDE has stronger security of ownership,and improves time efficiency.Specially,the new protocol works better on large files in cloud with a certain value.  相似文献   

14.
身份认证是无线传感器网络安全的第一道屏障。针对现有无线传感器网络中的身份认证协议的效率和安全问题,基于Shamir门限秘密共享方案提出一种低功耗的身份认证协议。在不降低网络安全性的前提下,通过多个已认证节点对新节点进行身份认证,能够有效的降低认证过程中的计算量。认证过程中使用单向散列函数对通信数据进行加密并且运用时间戳机制抵御重放攻击。分析结果表明协议具有低功耗的特点,并且能够抵御窃听攻击、重放攻击以及少数节点被俘虏的攻击。  相似文献   

15.
Human-centered systems play an important role in the modern world, for example, driverless car, autonomous and smart vehicles, drones, and robotics. The internet of things environment demands a faster real-time response depending on the applications processed in a particular duration. Mobile edge computing (MEC) allows a user to get a real-time response as compared with cloud computing (CC), although ensuring a number of security attributes in MEC environment remains challenging. In this article, a protocol is designed to achieve mutual authentication, anonymous communication, and security against traceability, as these are very crucial factors to ensure the security of data and user's privacy. Moreover, the proposed scheme ensures mutual authentication between a mobile user and an edge server along with the user's anonymity and untraceability. The proof of security and evaluation of performance of the scheme validates that it ensures security attributes and improves efficiency in terms of communication and computation overheads.  相似文献   

16.
With the rapid growth of electronic commerce and demand on variants of Internet based applications, the system providing resources and business services often consists of many servers around the world. So far, a variety of authentication schemes have been published to achieve remote user authentication on multi-server communication environment. Recently, Pippal et al. proposed a multi-server based authentication protocol to pursue the system security and computation efficiency. Nevertheless, based on our analysis, the proposed scheme is insecure against user impersonation attack, server counterfeit attack, and man-in-the-middle attack. In this study, we first demonstrate how these malicious attacks can be invoked by an adversary. Then, a security enhanced authentication protocol is developed to eliminate all identified weaknesses. Meanwhile, the proposed protocol can achieve the same order of computation complexity as Pippal et al.’s protocol does.  相似文献   

17.
In this paper, we propose a novel privacy‐preserving registration protocol that combines the verifier local revocation group signature with mobile IP. The protocol could achieve strong security guarantee, such as user anonymity via a robust temporary identity, local user revocation with untraceability support, and secure key establishment against home server and eavesdroppers. Various kinds of adversary attacks can be prevented by the proposed protocol, especially that deposit‐case attack does not work here. Meanwhile, a concurrent mechanism and a dynamical revocation method are designed to minimize the handover authentication delay and the home registration signals. The theoretical analysis and simulation results show that the proposed scheme could provide high security level besides lightweight computational cost and efficient communication performance. For instance, compared with Yang's scheme, the proposed protocol could decrease the falling speed of handover authentication delay up to about 40% with privacy being preserved. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Wearable devices, which provide the services of collecting personal data, monitoring health conditions, and so on, are widely used in many fields, ranging from sports to healthcare. Although wearable devices bring convenience to people's lives, they bring about significant security concerns, such as personal privacy disclosure and unauthorized access to wearable devices. To ensure the privacy and security of the sensitive data, it is critical to design an efficient authentication protocol suitable for wearable devices. Recently, Das et al proposed a lightweight authentication protocol, which achieves secure communication between the wearable device and the mobile terminal. However, we find that their protocol is vulnerable to offline password guessing attack and desynchronization attack. Therefore, we put forward a user centric three‐factor authentication scheme for wearable devices assisted by cloud server. Informal security analysis and formal analysis using ProVerif is executed to demonstrate that our protocol not only remedies the flaws of the protocol of Das et al but also meets desired security properties. Comparison with related schemes shows that our protocol satisfies security and usability simultaneously.  相似文献   

19.
In traditional face authentication system,the trait template and authentication request were generally matched over plaintext,which may lead to the leakage of users’ sensitive data.In order to address the above-mentioned problem,based on matrix encryption,an efficient and privacy-preserving online face authentication scheme was proposed.Specifically,the users’ face trait template for register and the authentication request were encrypted before being sent to the online authentication server,and the similarity computation between the encrypted face trait template and authentication request was computed by the online authentication server over ciphertexts,which guaranteed the security of users’ sensitive data without affecting the accuracy of face authentication.Security analysis shows that the proposed scheme can achieve multiple security levels according to different security parameters.Moreover,performance evaluation shows that the proposed scheme has low computation cost and communication overhead.Experiments results demonstrate the high efficiency of the proposed scheme,which can be implemented in the real environment effectively.  相似文献   

20.
章武媚 《电信科学》2016,32(5):121-126
针对现有基于椭圆曲线密码(elliptic curve cryptography,ECC)体制的 RFID(radio frequency identification device)安全认证方案不能满足相互认证、隐私保护和前向安全性等要求,提出一种基于Montgomery型椭圆曲线密码的认证方案。利用Montgomery型椭圆曲线来降低计算量,并提供标签和服务器之间的相互认证,具有匿名性和前向安全性。通过分析表明,该方案能够抵抗重放攻击、标签伪装攻击、服务器欺骗攻击、DoS攻击、位置跟踪攻击和克隆攻击。与现有方案相比,该方案在保证较低的内存、计算和通信需求的情况下,提供了较高的安全性能,能够满足RFID系统的安全性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号