首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
冲击载荷下混凝土动态力学性能研究进展   总被引:13,自引:1,他引:12  
系统总结了国内外研究者在混凝土动态抗压强度、抗拉强度和平板冲击实验研究方面所取得的最新进展,在此基础上分析了适用于冲击问题的混凝土本构模型的构建要素。对有代表性的用于数值模拟冲击问题的几个混凝土本构模型,如J-H模型、Forrestal模型、RHT模型和Malvar模型等。从极限面、状态方程以及损伤的定义及其演化等方面进行了深入分析,据此分析总结了混凝土动态本构模型的研究状况及发展趋势。  相似文献   

2.
非比例循环塑性和循环粘塑性本构描述的某些新进展   总被引:4,自引:1,他引:4  
高庆  杨显杰 《力学进展》1995,25(1):41-59
金属材料循环塑性本构方程和循环粘塑性本构方程是固体力学中近10多年来一个十分重要的领域。本文评述了金属材料非比例循环塑性界限面本构理论、内时理论和循环粘塑性本构理论及其某些进展,对某些模型中非比例度定义,材料在复杂应变幅值历史、非比例循环加载历史以及其它历史下的强化规则和流动规则进行了分析与评价,在此基础上对循环本构理论的发展趋势提出自己的看法。  相似文献   

3.
循环塑性双曲面多轴本构模型研究   总被引:3,自引:0,他引:3  
杨显杰  高庆  孙训方 《力学学报》1993,25(5):569-574
本文提出了一个考虑循环强化/软化效应、塑性应变幅历史效应以及非比例循环加载效应的双曲面模型。在模型中,引入了屈服面和极限面的演化方程;定义了循环应变路径的非比例度;给出了一套合理的确定模型参数的方法。将该模型用于调质热处理的42CrMo钢,模型预言的结果与实验结果吻合很好。  相似文献   

4.
在总结评述现有岩体结构面本构模型的基础上,将非线性弹性模型和弹塑性模型结合起来,并采用起伏角磨损演化方程来定量描述结构面的磨损软化,建立了岩体结构面非线性弹性-塑性软化本构模型.利用新建立的模型对岩体结构面直剪试验进行了预测,模型预测结果与试验结果吻合良好,验证了模型的有效性和模拟能力.该模型概念清晰,参数易于确定,能够合理描述岩体结构面的非线性变形、塑性软化、弹塑性耦合、剪胀和磨损等主要力学特性.  相似文献   

5.
基于热力学相容的本构模型并合理地定义广义时间,得到了描述蠕变、塑性及其交互作用的统一型本构方程。进而通过对在蠕变—塑性交互作用过程中材料内部子结构及其变化的分析,将材料的强化分解为对应于非弹性应变范围的强化和由蠕变变形导致的附加强化。对高温环境二维应力路径下304不锈钢的蠕变—塑性交互作用过程进行了分析,取得了与Ohashi等的实验相吻合的结果。  相似文献   

6.
采用Perzyna过应力本构框架,引入塑性损伤在饱和强化率相关介质中的动态演化规律,建立了考虑损伤的弹-粘塑性本构方程,修正了Eftis等人将Perzyna方程推广时采用不一致的基体强化模式推演损伤演化方程和本构关系这一矛盾。详细计算了黄铜的初始屈服强度及率相关屈了面,给出了动态单轴拉伸数值结果并与实验进行了比较,结果符合很好。  相似文献   

7.
TC4动态力学性能研究   总被引:7,自引:0,他引:7  
陈刚  陈忠富  陶俊林  牛伟  何鹏 《实验力学》2005,20(4):605-609
材料的本构模型参量是结构冲击动力响应数值模拟的基础。本文运用静态实验机和SHB装置,对TC4在常温~750C°、应变率10-4~103s-1下的力学行为进行了研究,得到了相应的塑性本构模型参量。通过Taylor撞击实验及其数值模拟对本构模型参量进行了验证,表明所得参量可较好描述冲击载荷作用下材料的塑性力学行为。  相似文献   

8.
季顺迎  岳前进 《力学进展》2005,35(2):235-248
从20世纪70年代, 人们在不同尺度下建立了一系列的海冰动力学本构模型用于海冰数值模拟和预测. 将目前应用的海冰动力学本构模型分为弹塑性、黏塑性、各向异性和颗粒流体动力学中的黏弹塑性模型4类,并分别讨论了各类模型的特点和适用范围. 尤其对在极区及副极区大、中尺度下广泛应用的黏塑性及其改进的本构模型进行了深入地分析. 最后得出: 在大、中尺度下建立海冰动力学的黏弹塑性本构模型是提高海冰动力学计算精度的有效途径; 将小尺度下采用黏弹塑性本构模型的海冰颗粒流体动力学的计算时效进一步改进后, 可在大、中尺度下对海冰的重叠、堆积特性进行模拟; 进一步开展海冰动力学的尺度效应研究, 进行海冰本构模型的实验验证, 并建立不同尺度模型间的相互联系也应是海冰动力学本构模型研究的重要内容.   相似文献   

9.
一种弹性粘塑性统一本构模型   总被引:1,自引:0,他引:1  
在深入研究分析材料变形过程的基础上,对材料变形与选定描述材料变形内变量的问题进行探讨,在唯象法的基础上提出一种金属材料变形的粘塑性统一本构模型。用该模型对304不锈钢的变形过程进行模拟,其计算结果较Miller模型更接近实验结果。  相似文献   

10.
Klisi.  M 俞稼pan 《力学进展》1990,20(2):239-250
本文提出一个描述各种材料的循环加载行为的一般理论,它在数学上以模糊集理论为基础。根据建立本构模型的观点,它跟以往的许多循环塑性模型有密切关系。它不是利用两个或两个以上的屈服面或界面,而是在由应力与一个从属函数(membership function)所生成的空间里引入一个更一般的曲面。这个概念使我们可以在同一个数学框架中定义许多不同的模型。借助于几个一维的例子考察这一理论的若干可能情形。本文考虑了有记忆与无记忆的以及记忆衰减的本构模型,这些模型有各向同性的和随动硬化的,以及无硬化的。用模糊集的表述法,描述了循环加载过程中的各种现象,如滞后回路,循环稳定效应,弹性-塑性的光滑转变,等等。这些现象都用适当的例子作了说明。  相似文献   

11.
12.
A phenomenological, flow theory version of gradient plasticity for isotropic and anisotropic solids is constructed along the lines of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain-gradient plasticity. J. Mech. Phys. Solids 52, 1379-1406]. Both energetic and dissipative stresses are considered in order to develop a kinematic hardening theory, which in the absence of gradient terms reduces to conventional J2 flow theory with kinematic hardening. The dissipative stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition with associated plastic flow. The theory includes interfacial terms: elastic energy is stored and plastic work is dissipated at internal interfaces, and a yield surface is postulated for the work-conjugate stress quantities at the interface. Uniqueness and extremum principles are constructed for the solution of boundary value problems, for both the rate-dependent and the rate-independent cases. In the absence of strain gradient and interface effects, the minimum principles reduce to the classical extremum principles for a kinematically hardening elasto-plastic solid. A rigid-hardening version of the theory is also stated and the resulting theory gives rise to an extension to the classical limit load theorems. This has particular appeal as previous trial fields for limit load analysis can be used to generate immediately size-dependent bounds on limit loads.  相似文献   

13.
An asymptotic analysis of equations of an axisymmetric flow of a rigid-plastic material obeying the double shear model in the vicinity of surfaces with the maximum friction is performed. It is shown that the solution is singular if the friction surface coincides with the envelope of the family of characteristics. A possible character of the behavior of singular solutions in the vicinity of surfaces with the maximum friction is determined. In particular, the equivalent strain rate in the vicinity of the friction surface tends to infinity in an inverse proportion to the square root from the distance to this surface. Such a behavior of the equivalent strain rate is also observed in the classical theory of plasticity of materials whose yield condition is independent of the mean stress.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 180–186, September–October, 2005.  相似文献   

14.
In the framework of rate-independent theory of metal plasticity the hypothesis of maximum plastic dissipation is commonly applied to derive the associated flow-rule and to prove convexity of the yield surface in stress space. Alternatively, Drucker’s postulate of material stability may be used to prove convexity. Both hypotheses appear reasonable, but it is appealing to derive the basic framework for rate-independent metal plasticity without involving additional hypotheses.In the present article it will be shown that indeed both hypotheses can be dropped and an alternative way is established to derive the associated flow-rule and to prove convexity of the yield surface. It turns out that the associated flow-rule as well as the convexity of the yield surface are intrinsic features of the proposed theoretical framework.  相似文献   

15.
This paper is concerned with a bipotential approach for estimating the plastic collapse loads of a half-space made with a non-associated Mohr–Coulomb material and indented by a rigid punch. In geotechnics, this problem is called the bearing capacity of shallow strip footing for which the analytical solution is derived by Prandtl (1920) [46] and Hill (1950) [35] in the context of associated plasticity. However, when the plastic model is not associated, no analytical methods have yet been developed. Here we explore this issue in a rigorous mathematical framework coupling the bipotential concept and limit analysis. First, the method proposed makes use of the method of characteristics to build a statically and plastically admissible stress field that enables a lower estimate of the plastic limit loads. Next, the extended kinematic theorem of limit analysis to non-standard plasticity is applied to derive an upper quasi-bound of the collapse loads. For this aim, the internal rate of plastic dissipation is obtained thanks to the bipotential functional depending on both a trial stress field and a Prandtl-like collapse mechanism. The analytic estimates are compared to the formulae and numerical results provided in literature.  相似文献   

16.
The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill’s solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined. The English text was polished by Yunming Chen.  相似文献   

17.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

18.
Using a dislocations-based model of slip and crystal plasticity, we show by illustrative examples that the experimentally observed increase in the yield stress of very thin metallic membranes most likely is due to the variation of grain orientations through the thickness of the membrane, as well as the surface hardness due to oxidation or contamination, both of which generally are insignificant when there is a sufficient number of interior crystals through the membrane thickness; the overall effect may well be produced by a combination of these two causes. We show that crystal plasticity models can account for such size effects without a need for resorting to phenomenological strain-gradient models. We illustrate this using Nemat-Nasser's dislocations-based slip-induced crystal plasticity model that inherently includes length scales, although other rate-dependent slip models, e.g., the classical power-law slip model, most likely would qualitatively produce similar results. Our numerical results, based on the experimentally supported dislocation-induced slip model and the values of the model parameters given in Nemat-Nasser and Li [1998. Flow stress of F.C.C. polycrystals with application to OFHC Cu. Acta Mater. 46, 565-577], correlate well, both qualitatively and quantitatively, with the experimental results reported by Hommel and Kraft [2001. Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935-3947] and Espinosa et al. [2004. Plasticity size effect in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667-689] for thin copper membranes, suggesting that, for submicron-sized samples, the classical crystal plasticity with slip models, does qualitatively account well for the small-size effects, and that quantitative predictions are obtained when, in addition, a physics-based dislocation model that includes length scales, is used. It is thus concluded that the length-scale effect and the size effect are two separate issues in metal plasticity, both of which are nicely accounted for by physics-based dislocation models of crystal plasticity without a need to include the plastic strain gradient.  相似文献   

19.
Discrete dislocation plasticity models and strain-gradient plasticity theories are used to investigate the role of interfaces in the elastic–plastic response of a sheared single crystal. The upper and lower faces of a single crystal are bonded to rigid adherends via interfaces of finite thickness. The sandwich system is subjected to simple shear, and the effect of thickness of crystal layer and of interfaces upon the overall response are explored. When the interface has a modulus less than that of the bulk material, both the predicted plastic size effect and the Bauschinger effect are considerably reduced. This is due to the relaxation of the dislocation stress field by the relatively compliant surface layer. On the other hand, when the interface has a modulus equal to that of the bulk material a strong size effect in hardening as well as a significant reverse plasticity are observed in small specimens. These effects are attributed to the energy stored in the elastic fields of the geometrically necessary dislocations (GNDs).  相似文献   

20.
This is a study of plastic strain localization, surface roughening and of the origin of these phenomena in polycrystals. An oligocrystal aluminum sample with a single quasi-2D layer of coarse grains is plastically deformed under uniaxial tensile loading. During deformation, the history of strain localization, surface roughening, microstructure and in-grain fragmentation is carefully recorded. Using a crystal plasticity finite element model, corresponding high-resolution simulations are conducted. A series of comparisons identifying aspects of good and of less good match between model predictions and experiments is presented. The study suggests that the grain topology and microtexture have a significant influence on the origin of strain heterogeneity. Moreover, it suggests that the final surface roughening profiles are related both to the macro strain localization and to the intra-grain interaction. Finally slip lines observed on the surface of the samples are used to probe the activation of slip systems in detail. The study concludes with an assessment of the limitations of the crystal plasticity model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号