首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadherins are a group of functionally related glycoproteins responsible for the Ca2+-dependent cell-cell adhesion mechanism. They are divided into subclasses, such as E-, P- and N-cadherin, which are distinct in immunological specificities and tissue distribution. Cell aggregation experiments suggest that these molecules have subclass specificities in cell-cell binding and are involved in selective cell adhesions. Analysis of amino acid sequences deduced from the nucleotide sequences of cDNAs encoding cadherins demonstrated that they are integral membrane proteins and share common sequences throughout their entire length; average similarity in the sequences among them is in a range of 50–60%. This result provided evidence that cadherins constitute a gene family which encodes adhesion molecules with different specificities. We also showed that, when cells with little cadherin activity were transfected with cadherin cDNAs, they acquired the cadherin-mediated adhesion properties.  相似文献   

2.
Juxtacrine cell interactions associated to cadherin-mediated cell-cell adhesion play a major role in the organization and homeostasis of tissues. Here, we review the intracellular molecules and regulations controlling the formation of cell-cell contacts initiated by homophilic interactions of cadherin ectodomain. These regulations involve proteins associated to cadherin cytoplasmic tail, named catenins, their association to the actin cytoskeleton and the stability of these complexes at the cell membrane. The underlying molecular mechanisms, which participate in the formation of dynamic cell-cell contacts, are intensively investigated.  相似文献   

3.
Monoclonal antibodies to the constitutive desmosomal glycoprotein desmoglein were characterized whose epitopes are located intracellularly, i.e., in the cytoplasmic portion of this molecule, and contribute to the structure of the desmosomal plaque. Using one of these antibodies (DG3.10), a peptide was isolated from a proteolytic digest of desmoglein purified from isolated bovine muzzle demosomes, and its amino acid sequence was determined. In comparisons of this sequence with the amino acid sequence of desmoglein as deduced from the sequence of cDNA clones from the same tissue, encompassing most of approximately 7.6 kb mRNA and the complete coding region of 959 residues (calculated molecular weight approximately 102,400), the DG3.10 epitope was identified in a region starting 163 amino acids before the carboxy terminus in the first of four consecutive repeats of a homologous element of 29 +/- 1 amino acids. This topological information, together with the identification of a single hydrophobic region of sufficient length to provide a transmembrane segment and of several extended regions showing high sequence homology to various cadherins, has allowed the construction of a model of the molecular organization of desmoglein. We conclude that desmoglein is a member of the cadherin family of cell adhesion glycoproteins which is characterized by an unusually long cytoplasmic domain which exceeds those of the cadherins by more than 275 amino acids, contains special repetitive elements and spans the desmosomal plaque at least once.  相似文献   

4.
A Nose  K Tsuji  M Takeichi 《Cell》1990,61(1):147-155
Cadherins are a group of homophilic intercellular adhesion molecules; each member of this family exhibits binding specificity. Here, we attempted to map the sites for the specificities of these molecules by analyzing adhesives selectivities of the cells that express chimeric and point-mutated E- and P-cadherin. The results showed that the amino-terminal 113 amino acid region is essential to determine the specificities, and within this region we could identify especially important sites in which amino acid substitutions altered the binding specificity of cadherins. We also found that the epitopes for antibodies capable of blocking cadherin action are located in this amino-terminal region.  相似文献   

5.
Classical cadherin adhesion molecules are fundamental determinants of tissue organization in both health and disease. Recent advances in understanding the molecular and cellular basis of cadherin function have revealed that these adhesion molecules serve as molecular couplers, linking cell surface adhesion and recognition to both the actin cytoskeleton and cell signalling pathways. We will review some of these developments, to provide an overview of progress in this rapidly-developing area of cell and developmental biology.  相似文献   

6.
Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain.   总被引:49,自引:0,他引:49  
C Kintner 《Cell》1992,69(2):225-236
Differential adhesion between embryonic cells has been proposed to be mediated by a family of closely related glycoproteins called the cadherins. The cadherins mediate adhesion in part through an interaction between the cadherin cytoplasmic domain and intracellular proteins, called the catenins. To determine whether these interactions could regulate cadherin function in embryos, a form of N-cadherin was generated that lacks an extracellular domain. Expression of this mutant in Xenopus embryos causes a dramatic inhibition of cell adhesion. Analysis of the mutant phenotype shows that at least two regions of the N-cadherin cytoplasmic domain can inhibit adhesion and that the mutant cadherin can inhibit catenin binding to E-cadherin. These results suggest that cadherin-mediated adhesion can be regulated by cytoplasmic interactions and that this regulation may contribute to morphogenesis when emerging tissues coexpress several cadherin types.  相似文献   

7.
Cadherins are major cell-surface receptors involved in specific cell adhesion during development. Recent results reveal the existence of a growing array of related molecules involved in various forms of cell-cell adhesion, including that mediated by desmosomes. Comparisons with other families of adhesion receptors suggest testable models for functions of the emerging cadherin superfamily in development and disease.  相似文献   

8.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

9.
M Amagai  V Klaus-Kovtun  J R Stanley 《Cell》1991,67(5):869-877
Pemphigus vulgaris (PV) is a life-threatening skin disease in which autoantibodies against a keratinocyte cell surface 130 kd glycoprotein, PV antigen (PVA), cause loss of cell-cell adhesion, with resultant epidermal blisters. We used affinity-purified PV IgG to isolate cDNA, containing the entire coding sequence for PVA, from human keratinocyte expression libraries. Northern blot analysis indicated PV mRNA expression only in stratified squamous epithelia. The deduced amino acid sequence of PVA was unique but showed significant homology with members of the cadherin family of Ca(2+)-dependent cell adhesion molecules, most markedly to desmoglein I. These findings demonstrate that a novel epithelial cadherin is the target of autoantibodies in PV.  相似文献   

10.
During morphogenesis, cell-cell association patterns are dynamically altered. We are interested in how cell adhesion molecules can regulate the patterning of cellular assemblies. Cadherins, a group of cell-cell adhesion receptors, are crucial for the organized assembly of many cell types, but they also regulate dynamic aspects of cell association. For example, during neural crest emigration from the neural tube, the cadherin subtypes expressed by crest cells are switched from one subtype to another. Artificial perturbation of this switch results in blocking of their escape from the neural tube. Intracellular modulations of cadherin activity also seem to play a role in regulation of cell adhesion. We identified p120ctn as a regulator of cadherin function in carcinoma cells. With such regulators, cells may make a choice as to whether they should maintain stable cell contacts or disrupt their association. Finally, we found another type of cadherin-mediated cell patterning: Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity in Drosophila imaginal discs. Thus, the cadherin superfamily receptors control the patterning of cell assemblies through a variety of mechanisms.  相似文献   

11.
A primary function of cadherins is to regulate cell adhesion. Here, we demonstrate a broader function of cadherins in the differentiation of specialized epithelial cell phenotypes. In situ, the rat retinal pigment epithelium (RPE) forms cell-cell contacts within its monolayer, and at the apical membrane with the neural retina; Na+, K(+)-ATPase and the membrane cytoskeleton are restricted to the apical membrane. In vitro, RPE cells (RPE-J cell line) express an endogenous cadherin, form adherens junctions and a tight monolayer, but Na+,K(+)-ATPase is localized to both apical and basal-lateral membranes. Expression of E- cadherin in RPE-J cells results in restriction and accumulation of both Na+,K(+)-ATPase and the membrane cytoskeleton at the lateral membrane; these changes correlate with the synthesis of a different ankyrin isoform. In contrast to both RPE in situ and RPE-J cells that do not form desmosomes, E-cadherin expression in RPE-J cells induces accumulation of desmoglein mRNA, and assembly of desmosome-keratin complexes at cell-cell contacts. These results demonstrate that cadherins directly affect epithelial cell phenotype by remodeling the distributions of constitutively expressed proteins and by induced accumulation of specific proteins, which together lead to the generation of structurally and functionally distinct epithelial cell types.  相似文献   

12.
Desmoglein is a major adhesive component of the desmosome. It is also at least one of the antigenic targets of pathogenic antibodies circulating in the sera of patients with the blistering disease Pemphigus foliaceus. To examine the molecular basis of desmosomal adhesion and to further our understanding of its disruption in various bullous disorders we have cloned cDNAs encoding four of the extracellular domains of desmoglein. The predicted amino acid sequence of these clones shows extensive homology with the cadherin class of calcium-dependent cell adhesion molecules. Desmoglein represents a novel subtype of this family.  相似文献   

13.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:37,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

14.
Numerous attempts to elucidate the strength of cadherin dimerization that mediates intercellular adhesion have produced controversial and inconclusive results. To clarify this issue, we compared E-cadherin dimerization on the surface of living cells with how the same process unfolds on agarose beads. In both cases, dimerization was monitored by the same site-specific cross-linking assay, greatly simplifying data interpretation. We showed that on the agarose surface under physiological conditions, E-cadherin produced a weak dimer that immediately dissociated after the depletion of calcium ions. However, either at pH 5 or in the presence of cadmium ions, E-cadherin produced a strong dimer that was unable to dissociate upon calcium depletion. Both types of dimers were W156-dependent. Remarkably, only the strong dimer was found on the surface of living cells. We also showed that the intracellular cadherin region, the clustering of which through catenins had been proposed as stabilizer of weak intercadherin interactions, was not needed, in fact, for cadherin junction assembly. Taken together, our data present convincing evidence that cadherin adhesion is based on high-affinity cadherin-cadherin interactions.  相似文献   

15.
Wnt-1 homologs have been identified in invertebrates and vertebrates and play important roles in cellular differentiation and organization. In Drosophila, the products of the segment polarity genes wingless (the Wnt-1 homolog) and armadillo participate in a signal transduction pathway important for cellular boundary formation in embryonic development, but functional interactions between the proteins are unknown. We have examined Wnt-1 function in mammalian cells in which armadillo (beta-catenin and plakoglobin) is known to bind to and regulate cadherin cell adhesion proteins. We show that Wnt-1 expression results in the accumulation of beta-catenin and plakoglobin. In addition, binding of beta-catenin to the cell adhesion protein, cadherin, is stabilized, resulting in a concomitant increase in the strength of calcium-dependent cell-cell adhesion. Thus, a consequence of the functional interaction between Wnt-1 and armadillo family members is the strengthening of cell-cell adhesion, which may lead to the specification of cellular boundaries.  相似文献   

16.
Summary The discovery of endogenous lectins having specific and high affinity for the carbohydrate portions of glycoproteins has opened up new directions in the field of cell adhesion and cell recognition. Two endogenous lectins, termed as CSL and R1, initially isolated from the rat cerebellum and having a wide distribution in mammalian tissues, have been shown to participate in essential mechanisms of cell adhesion. The membrane-bound lectin R1 seems to be involved in transient recognition between neuronal cells, followed by elimination of the glycoprotein ligands at the surface of the recognized cell. In contrast, CSL is a molecule involved in adhesion between various normal or transformed cells since it participates in the formation of tight junctions. The glycoprotein ligands recognized with higher affinity by these two lectins seem to possess a special structure which defines a sub-class of oncofetal HNK-1 glycans. The over-expression of the glycoprotein ligands of these lectins in most transformed cells provides new tools for understanding the underlying mechanism of malignant transformation as well as the generation of signals through cell adhesion.  相似文献   

17.
We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin-catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor-induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane.  相似文献   

18.
Epithelial cadherin (E-cadherin) is a member of the cadherin family of calcium-dependent cell adhesion molecules and is present in the ovary. Although expression of E-cadherin is high in healthy pig granulosa cells and low in granulosa cells of atretic follicles, the importance of E-cadherin-mediated adhesion in granulosa cell function is unclear. The aim of the present study was to determine the impact of immunoneutralization of E-cadherin on granulosa cell adhesion, DNA synthesis and cell proliferation in vitro. Before attachment, pig granulosa cells were exposed to a monoclonal E-cadherin antibody (DECMA-1) which blocks E-cadherin function. Controls included substitution of the antibody with either mouse ascites fluid or another E-cadherin antibody directed against the cytoplasmic domain and which was therefore inaccessible in intact cells. Both granulosa cell proliferation and insulin-like growth factor I-induced DNA synthesis were inhibited significantly in the presence of DECMA-1 compared with controls (P < 0.05). Control granulosa cells in culture formed large clusters with many cells packed tightly together. However, after 48 h exposure to the function-perturbing E-cadherin antibody, there was a significant decrease in the size of the granulosa cell clusters (P < 0.05) and the degree of cell-cell contact was reduced compared with control cultures. No effects on DNA synthesis, cell proliferation or cell adhesion were observed when DECMA-1 was substituted with either mouse ascites fluid or the antibody specific for the cytoplasmic domain of E-cadherin. In conclusion, these data provide evidence to support the hypothesis that E-cadherin is important for maintaining granulosa cell contact, DNA synthesis and cell proliferation in vitro. These results indicate that E-cadherin plays a fundamental role in maintaining both the structure and function of ovarian follicles.  相似文献   

19.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

20.
We have characterized T-cadherin, a glycoprotein of 95 kd from chick embryo brain by expression cloning and sequencing of corresponding cDNAs. The nucleotide sequence predicts a novel cadherin cell adhesion molecule in the nervous system. Surprisingly, the isolated cDNAs do not encode the cytoplasmic region conserved in other cadherin subclasses. Biochemical analysis revealed that this truncated (T) cadherin is attached to the neuronal plasma membrane through a glycosyl phosphatidylinositol anchor. T-cadherin is a component of different neuronal populations and is expressed in a temporally and spatially restricted pattern during axon growth. These results are consistent with a putative role of T-cadherin in axon growth and guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号