首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We study existence of positive weak solution for a class of $p$-Laplacian problem $$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda g(x)[f(u)-\frac{1}{u^{\alpha}}], & x\in \Omega,\\u= 0 , & x\in\partial \Omega,\end{array\right.$$ where $\lambda$ is a positive parameter and $\alpha\in(0,1),$ $\Omega $ is a bounded domain in $ R^{N}$ for $(N > 1)$ with smooth boundary, $\Delta_{p}u = div (|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator for $( p > 2),$ $g(x)$ is $C^{1}$ sign-changing function such that maybe negative near the boundary and be positive in the interior and $f$ is $C^{1}$ nondecreasing function $\lim_{s\to\infty}\frac{f(s)}{s^{p-1}}=0.$ We discuss the existence of positive weak solution when $f$ and $g$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.  相似文献   

2.
In this paper, we study the existence of nodal solutions for the following problem:-(φ_p(x′))′= α(t)φ_p(x~+) + β(t)φ_p(x~-) + ra(t)f(x), 0 t 1,x(0) = x(1) = 0,where φ_p(s) = |s|~(p-2)s, a ∈ C([0, 1],(0, ∞)), x~+= max{x, 0}, x~-=- min{x, 0}, α(t), β(t) ∈C[0, 1]; f ∈ C(R, R), sf(s) 0 for s ≠ 0, and f_0, f_∞∈(0, ∞), where f_0 = lim_|s|→0f(s)/φ_p(s), f_∞ = lim|s|→+∞f(s)/φ_p(s).We use bifurcation techniques and the approximation of connected components to prove our main results.  相似文献   

3.
In this paper,we are interested in the existence of positive solutions for the Kirchhoff type problems{-(a_1 + b_1M_1(∫_?|▽u|~pdx))△_(_pu) = λf(u,v),in ?,-(a_2 + b_2M_2(∫?|▽v|~qdx))△_(_qv) = λg(u,v),in ?,u = v = 0,on ??,where 1 p,q N,M i:R_0~+→ R~+(i = 1,2) are continuous and increasing functions.λ is a parameter,f,g ∈ C~1((0,∞) ×(0,∞)) × C([0,∞) × [0,∞)) are monotone functions such that f_s,f_t,g_s,g_t ≥ 0,and f(0,0) 0,g(0,0) 0(semipositone).Our proof is based on the sub-and super-solutions techniques.  相似文献   

4.
Using variational methods, we study the existence of weak solutions forthe degenerate quasilinear elliptic system$$\left\{\begin{array}{ll}- \mathrm{div}\Big(h_1(x)|\nabla u|^{p-2}\nabla u\Big) = F_{u}(x,u,v) &\text{ in } \Omega,\\-\mathrm{div}\Big(h_2(x)|\nabla v|^{q-2}\nabla v\Big) = F_{v}(x,u,v) &\text{ in } \Omega,\\u=v=0 & \textrm{ on } \partial\Omega,\end{array}\right.$$where $\Omega\subset \mathbb R^N$ is a smooth bounded domain, $\nabla F= (F_u,F_v)$ stands for the gradient of $C^1$-function $F:\Omega\times\mathbb R^2 \to \mathbb R$, the weights $h_i$, $i=1,2$ are allowed to vanish somewhere,the primitive $F(x,u,v)$ is intimately related to the first eigenvalue of acorresponding quasilinear system.  相似文献   

5.
该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题其中Ω是RN中具有C1边界的有界区域,0∈■Ω,N≥5.2*(s)=2(N-s)/N-2(0≤s≤2)是临界Sobolev-Hardy指标, 10.利用变分方法和对偶喷泉定理,证明了这个方程无穷多解的存在性.  相似文献   

6.
For $N\geq 3$ and non-negative real numbers $a_{ij}$ and $b_{ij}$ ($i,j= 1, \cdots, m$), the semi-linear elliptic system\begin{equation*} \begin{cases}\Delta u_i+\prod\limits_{j=1}^m u_j^{a_{ij}}=0,\text{in}\mathbb{R}_+^N,\\dfrac{\partial u_i}{\partial y_N}=c_i\prod\limits_{j=1}^m u_j^{b_{ij}},\text{on} \partial\mathbb{R}_+^N,\end{cases}\qquad i=1,\cdots,m,\end{equation*} % is considered, where $\mathbb{R}_+^N$ is the upper half of $N$-dimensional Euclidean space. Under suitable assumptions on the exponents $a_{ij}$ and $b_{ij}$, a classification theorem for the positive $C^2(\mathbb{R}_+^N)\cap C^1(\overline{R_+^N})$-solutions of this system is proven.  相似文献   

7.
This paper is concerned with the $p(x)$-Laplacian equation of the form $$ \left\{\begin{array}{ll} -\Delta_{p(x)} u=Q(x)|u|^{r(x)-2}u, &\mbox{in}\ \Omega,\u=0, &\mbox{on}\ \partial \Omega, \end{array}\right. \eqno{0.1} $$ where $\Omega\subset\R^N$ is a smooth bounded domain, $1p^+$ and $Q: \overline{\Omega}\to\R$ is a nonnegative continuous function. We prove that (0.1) has infinitely many small solutions and infinitely many large solutions by using the Clark''s theorem and the symmetric mountain pass lemma.  相似文献   

8.
Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type
‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,
where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies
4∧β/π∧′=1/σ.
The constant in the above inequality is exact.  相似文献   

9.
本文首先引入满足如下条件$$-\frac{qzD_{q}f(z)}{f(z)}\prec \varphi (z)$$和$$\frac{-(1-\frac{\alpha }{q})qzD_{q}f(z)+\alpha qzD_{q}[zD_{q}f(z)]}{(1-\frac{\alpha}{q})f(z)-\alpha zD_{q}f(z)}\prec \varphi (z)~(\alpha \in\mathbb{C}\backslash (0,1],\ 0相似文献   

10.
In this paper,the authors obtain the existence of one-signed periodic solutions of the first-order functional difference equation ?u(n) = a(n)u(n)-λb(n)f(u(n-τ(n))),n ∈ Z by using global bifurcation techniques,where a,b:Z → [0,∞) are T-periodic functions with ∑T n=1 a(n) 0,∑T n=1 b(n) 0;τ:Z → Z is T-periodic function,λ 0 is a parameter;f ∈ C(R,R) and there exist two constants s_2 0 s_1 such that f(s_2) = f(0) = f(s_1) = 0,f(s) 0 for s ∈(0,s_1) ∪(s_1,∞),and f(s) 0 for s ∈(-∞,s_2) ∪(s_2,0).  相似文献   

11.
本文主要研究如下含非线性梯度项的非强制拟线性椭圆方程\begin{equation*}\left \{\begin{array}{rl}-\text{div}(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta(p-1)}})+\frac{|u|^{p-2}u|\nabla u|^{p}}{(1+|u|)^{\theta p}}=\mu,~&x\in\Omega,\\ u=0,~&x\in\partial\Omega,\end{array}\right.\end{equation*} 弱解的存在性和不存在性, 其中$\Omega\subseteq\mathbb{R}^N(N\geq3)$ 是有界光滑区域, $1相似文献   

12.
The paper deal with the existence of positive solution for the following (p,q)-Laplacian nonlinear system \begin{align*} \left\{ \begin{array}{ll} -Δ_pu=a(x)(α_1f(v)+β_1h(u)), & x∈Ω,\\ -Δ_qv=b(x)(α_2g(u)+β_2k(v)),& x∈Ω,\\ u=v=0,& x∈∂Ω,\end{array} \right. \end{align*} where $Δ_p$ denotes the p-Laplacian operator defined by $Δ_{p}z=div(|∇_z|^{p-2}∇z), p>1, α_1, α_2, β_1, β_2$ are positive parameters and Ω is a bounded domain in $R^N(N > 1)$ with smooth boundary ∂Ω. Here a(x) and b(x) are $C^1$ sign-changing functions that maybe negative near the boundary and f, g, h, k are C^1 nondecreasing functions such that $f, g, h, k: [0,∞)→[0,∞); f (s), g(s), h(s), k(s) > 0; s > 0$ and $lim_{n→∞}\frac{f(Mg(x)^{\frac{1}{q-1}}}{x^{p-1}}=0$ for every $M > 0$. We discuss the existence of positive solution when $f, g, h, k, a(x)$ and $b(x)$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.  相似文献   

13.
This paper deals with the existence and stability properties of positive weak solutions to classes of nonlinear systems involving the (p,q)-Laplacian of the form
$ \left\{{ll} -\Delta_{p} u = \lambda \,a(x)\,v^{\alpha}-c, & x\in \Omega,\\ -\Delta_{q} v = \lambda \,b(x)\,u^{\beta}-c, & x\in \Omega,\\ u=0=v, & x\in\partial \Omega, \right. $ \left\{\begin{array}{ll} -\Delta_{p} u = \lambda \,a(x)\,v^{\alpha}-c, & x\in \Omega,\\ -\Delta_{q} v = \lambda \,b(x)\,u^{\beta}-c, & x\in \Omega,\\ u=0=v, & x\in\partial \Omega, \end{array}\right.  相似文献   

14.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

15.
We investigate the existence of the global weak solution to the coupled Chemotaxisfluid system ■in a bounded smooth domain ??R~2. Here, r≥0 and μ 0 are given constants,?Φ∈L~∞(?) and g∈L~2((0, T); L_σ~2(?)) are prescribed functions. We obtain the local existence of the weak solution of the system by using the Schauder fixed point theorem. Furthermore, we study the regularity estimate of this system. Utilizing the regularity estimates, we obtain that the coupled Chemotaxis-fluid system with the initial-boundary value problem possesses a global weak solution.  相似文献   

16.
Let $s_n(f,z):=\sum_{k=0}^{n}a_kz^k$ be the $n$th partial sum of $f(z)=\sum_{k=0}^{\infty{}}a_kz^k$. We show that $\RE s_n(f/z,z)>0$ holds for all $z\in\D,\ n\in\N$, and all starlike functions $f$ of order $\lambda$ iff $\lambda_0\leq\lambda<1$ where $\lambda_0=0.654222...$ is the unique solution $\lambda\in(\frac{1}{2},1)$ of the equation $\int_{0}^{3\pi/2}t^{1-2\lambda}\cos t \,dt=0$. Here $\D$ denotes the unit disk in the complex plane $\C$. This result is the best possible with respect to $\lambda_0$. In particular, it shows that for the Gegenbauer polynomials $C_{n}^{\mu}(x)$ we have $\sum_{k=0}^n C_{k}^{\mu}(x)\cos k \theta>0$ for all $n\in\N,\ x\in[-1,1]$, and $0<\mu\leq\mu_0:=1-\lambda_0=0.345778...$. This result complements an inequality of Brown, Wang, and Wilson (1993) and extends a result of Ruscheweyh and Salinas (2000).  相似文献   

17.
In this paper, we consider the following nonhomogeneous Schrodinger-Poisson equation $$ \left\{ - \Delta u +V(x)u+\phi(x)u =-k(x)|u|^{q-2}u+h(x)|u|^{p-2}u+g(x), &x\in \mathbb{R}^3,\\ \Delta \phi =u^2, \quad \lim_{|x|\rightarrow +\infty}\phi(x)=0, & x\in \mathbb{R}^3, \right. $$ where $1相似文献   

18.
This paper focuses on the following Schrödinger–Poisson equations involving a fractional nonlocal operator \({\left\{\begin{array}{ll}-\Delta u+u+\phi u=f(x,u),&{\rm in}\ \mathbb{R}^3,\\(-\Delta)^{\alpha/2}\phi=u^2,\\lim_{|x|\to \infty}\phi(x)=0,&{\rm in}\ \mathbb{R}^3,\end{array}\right.}\) where \({\alpha \in (1,2]}\). Under certain assumptions, we obtain the existence of nontrivial solution of the above problem without compactness by using the methods of perturbation and the mountain pass theorem.  相似文献   

19.
In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form $$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$ is considered in a bounded domain ??. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.  相似文献   

20.
We consider the limiting property of the distribution function of L~p function at endpoints 0 and ∞ and prove that for λ 0 the following two equations limλ→+∞λ~pm({x : |f(x)| λ}) = 0, limλ→0+λ~pm({x : |f(x)| λ}) = 0hold for f ∈ L~p(Rn) with 1 ≤ p ∞. This result is naturally applied to many operators of type(p, q) as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号