首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present water imaging of a plant sample both by neutron beam and positron emission tracer imaging system (PETIS). The former method provided static water profile in a plant sample as well as that in the vicinity of a root imbedded in soil. Not only X-ray film but also CT method using a cooled CCD camera is presented. Through non-destructive water image in an X-ray film, root development as well as 2-dimensional water movement toward the root was analyzed. Spatial water image was constructed from 180 CT projection images, taken at an interval of one degree while rotating the sample, through a CCD camera. In the case of a soybean root, there was a water gradient toward a root in soil and gave minimum value at about 1 mm far from the surface of a root. The water absorbing part in a root was gradually shifted downward with the root development. We also present real time water movement by PETIS, where water was labeled with a positron emitting nuclide, 15O. The transportation of 15O-water within a plant was relatively slow and water uptake was observed only at the lowest internode, between a root and the first leaf, during 20-minute measurement.  相似文献   

2.
The final step in gas turbine electric power production plants is the cooling of water after the turbine expansion. In some thermal plants, the temperature reduction of the recycling fluid is partially obtained by heat exchanging with the atmosphere by passing the fluid through huge aluminum heat exchangers. From the corrosion point of view, most critical is the starting step of the power plant, when the aluminum cooling system comes in contact with water for the first time and reaches a surface condition in dynamic equilibrium with the liquid. This paper describes a systematic study of aluminum surface evolution in the cooling system of an electric power plant during the first weeks of operation. Some aluminum samples were placed inside the cooling system in significant locations and removed after scheduled times. The surface conditions of the samples were characterized using surface analyses, electrochemical techniques and microscopic observations. At the same time, the chemical conditions of the recycling fluids were monitored. The obtained results describe the corrosion resistance of the aluminum surface as a function of the conditioning time, proving the growth of a partially protective layer able to produce corrosion decrease during the service time of the energy production plant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract— Plastic mulches are widely used to conserve water and control weeds with less applied herbicides in production of food crops. Both yield and quality are important and can be affected by reflected blue (B), red (R) and far-red (FR) light combinations received during growth and development. Photosynthate allocation among growing plant parts and flavor of edible roots were studied in turnip ( Brassica rapa L.) grown in trickle-irrigated field plots with blue, green and white mulches. The blue and green mulches reflected different amounts of B, but they both reflected FR/R ratios higher than the ratio in incoming sunlight. The white mulch reflected more photosyn-thetic light and a lower FR/R ratio than the blue or green mulches. Plants grown with blue and green mulches did not differ significantly in leaf length, root size and shoot/ root biomass ratio. Those grown with white had shorter leaves and larger roots. Taste testers found that plants grown with blue mulch developed roots with a sharp flavor, and roots from plants grown with green mulch had a mild flavor. Those grown with white had a less distinct flavor. Roots grown with blue mulch had the greatest concentrations of total glucosinolates (GSL) and ascorbic acid. Reducing sugar concentrations were higher in roots grown with green than in those grown with blue mulches. The comparison of chemical composition of roots from plants grown with blue versus green mulches is important because the main difference was the amount of reflected B, suggesting that B influenced an enzyme involved in the pathway from glucose to GSL. We conclude that the spectrum of light reflected from mulch on the soil surface can influence not only shoot/root biomass ratio but also flavor-related chemical composition of field-grown food crop plants.  相似文献   

4.
Developing orthogonal surface chemistry techniques that perform at the nanoscale is key to achieving precise control over molecular patterning on surfaces. We report the formation and selective functionalization of alumina nanoparticle arrays generated from block copolymer templates. This new material provides an alternative to gold for orthogonal surface chemistry at the nanometer scale. Atomic force microscopy and X-ray photoelectron spectroscopy confirm these particles show excellent selectivity over silica for phosphonic and carboxylic acid adsorption. As this is the first reported synthesis of alumina nanoparticles from block copolymer templates, characterizations via Fourier transform infrared spectroscopy, Auger electron spectroscopy, and transmission electron microscopy are presented. Reproducible formation of alumina nanoparticles was dependent on a counterintuitive synthetic step wherein a small amount of water is added to an anhydrous toluene solution of block copolymer and aluminum chloride. The oxidation environment of the aluminum in these particles, as measured by Auger electron spectroscopy, is similar to that of native aluminum oxide and alumina grown by atomic layer deposition. This discovery expands the library of available surface chemistries for nanoscale molecular patterning.  相似文献   

5.
A method has been developed for quantification of 20 amino acids as well as 13 (15)N-labeled amino acids in barley plants. The amino acids were extracted from plant tissues using aqueous HCl-ethanol and directly analyzed without further purification. Analysis of the underivatized amino acids was performed by liquid chromatography (LC)-electrospray ionization (ESI) tandem mass spectrometry (MS-MS) in the positive ESI mode. Separation was achieved on a strong cation exchange column (Luna 5micro SCX 100A) with 30 mM ammonium acetate in water (solvent A) and 5% acetic acid in water (solvent B). Quantification was accomplished using d (2)-Phe as an internal standard. Calibration curves were linear over the range 0.5-50 microM, and limits of detection were estimated to be 0.1-3.0 microM. The mass-spectrometric technique was employed to study the regulation of amino acid levels in barley plants grown at 15 degrees C uniform root temperature (RT) and 20-10 degrees C vertical RT gradient (RTG). The LC-MS-MS results demonstrated enhanced concentration of free amino acids in shoots at 20-10 degrees C RTG, while total free amino acid concentration in roots was similarly low for both RT treatments. (15)NO(3) (-) labeling experiments showed lower (15)N/(14)N ratios for Glu, Ser, Ala and Val in plants grown at 20-10 degrees C RTG compared with those grown at 15 degrees C RT.  相似文献   

6.
A method based on neutron scattering was proposed to investigate isothermal water infiltration in porous media. Two different kinds of fired clay bricks were investigated. While the sample absorb water, scattered neutrons from the different wetted regions, along the flow direction were continuously recorded. The results were discussed in terms of the theory of water infiltration in unsaturated porous media as well as by an anomalous diffusion approach. It was shown that the infiltration process in the Canadian clay brick (CCB) is Fickian and the water diffusivity was analytically determined, while it is non-Fickian in the Egyptian clay brick (ECB). The infiltration process in ECB can be modeled as a two stage Fickian process, at the low and high absorption times. The anomalous diffusion approach failed to describe the diffusion process in the ECB at all water contents.  相似文献   

7.
Electrical and morphological properties of polypyrrole (PPy) films were studied during and after their electrochemical growth under various experimental conditions on a nanometer scale using a current-sensing atomic force microscope (CS-AFM). Of acetonitrile (ACN) solutions containing various amounts of water, one that contained 1.0% water produced the best quality films in their electrical and morphological properties in terms of homogeneities. The degree of doping, as well as time evolution of the film structure and its conductivity, of the PPy films was investigated during their growth in water and ACN with 1.0% water by obtaining the current images at a few designated growing stages, and the results were compared. Well-doped, conductive films were obtained from the very early stage during the electrodeposition of PPy in the ACN solution, while the films were poorly doped in water. As the film deposition progressed further in both aqueous and nonaqueous media, the doped areas spread over the whole surface leading to a more homogeneously conducting film. The current-voltage traces were obtained at each growing stage, which showed that the conductivity increases in both media as the PPy grows; the conductivity of the film grown in ACN is much higher than that of the film grown in water at all growing stages. The electrical properties of the PPy film deteriorated gradually upon exposure to air.  相似文献   

8.
Two kinds of adsorbents (Si adsorbent and Al adsorbent) for the removal of silicic acid from geothermal water to retard the formation of silica scales were prepared using silicic acid contained in geothermal water. The Si adsorbent was prepared by evaporating geothermal water, and the Al adsorbent was prepared by evaporating geothermal water after the addition of aluminum chloride. The specific surface area of the Si adsorbent was small and it's adsorption capacity of silicic acid was low. Although the specific surface area of the Al adsorbent was also small, it was significantly increased by the adsorption of silicic acid and it's adsorption capacity was high. Based on the change in the local structure of aluminum ion by the adsorption of silicic acid, the Al adsorbent was considered to be silica particles covered with crystalline aluminum hydroxide. Moreover, it was concluded that the increase in the specific surface area of the Al adsorbent and the decrease in the zeta potential were due to the formation of an amorphous aluminosilicate with a large surface area and a negative charge (one 4-coordinated Al) by the reaction between aluminum ions and silicic acids.  相似文献   

9.
Selenium-containing root exudates were investigated in a known selenium accumulator model plant. Indian mustard (Brassica juncea) plants were grown hydroponically and supplemented with selenite (SeO(3)(2-)) in a 25% Hoagland's nutrient solution. Additive concentrations were 0, 1, 5 and 20 microg mL(-1) Se with five replicate plants per treatment level. Plants were exposed to the respective Se solutions for two weeks, then placed in deionized water for two more weeks. The hydroponic solutions were collected for analysis after the first two weeks of selenium supplementation (day 14) and twice during the deionized water period (days 21 and 28). Separation by ion-pairing high performance liquid chromatography was followed by inductively coupled plasma-mass spectrometry (ICP-MS) for selenium specific detection. Chromatographic peaks unable to be identified by retention-time matching were collected for analysis by electrospray ionization mass spectrometry (ESI-MS). Additional chemical experiments were performed for structural elucidation. Several selenium-containing compounds were identified in the exudate-containing solution and two were identified as selenocystine and the selenosulfate (SSeO(3)(2-)) ion. The presence of dimethylselenide (CH(3)SeCH(3)) is also observed but cannot be attributed exclusively to plant exudation because plants were not grown in sterile conditions. Further, the incorporation of fortified selenoamino acids into peptide structures was found to occur under neutral pH conditions, suggesting that exuded enzymes might facilitate such a reaction. Finally, physiological differences resulting from selenium supplementations were noted and discussed.  相似文献   

10.
Summary Neutron radiography is a developed nondestructive research method. The neutron total cross sections of light elements, especially hydrogen, make it quite unique as compared to X-ray radiography. The cold and very cold neutron radiography facilities in Kyoto University Reactor (KUR) are used to take a high contrast neutron images with very low energy neutrons. They are used especially for the agricultural research to show a small change of water distribution in plants.  相似文献   

11.
有机二阶非线性光学活性晶体的分子设计和晶体工程是复杂而又引人注目的课题.有机非线性光学晶体N一忡硝基苯基)-LWe脯氨醇(NPP)是一个极为成功的自]子山.由于在**P分子中引入了含手性碳原子和可形成分子间氢键的电子给体脯氨醇,使得其分子跃迁偶极矩与单科P21晶体结构的二重轴之间的夹角为586”.接近于理论优化值(54.74”),因此,**P具有很高的宏观二阶非线性光学活性,其粉末二次谐波强度为尿素的150倍.自1984年首次报导以来,对它的晶体生长门和物理性质已进行了广泛深入的研究.原子力显微镜(**M)能够以极高…  相似文献   

12.
Cowpea (Vigna unguliculata Walp) is considered one of the most drought resistant species among the pulse crops. It was suggested that in the lower part of the stem, parenchymatous tissue for storing water has been developed for the function of drought resistance. However, such tissue has not been identified yet. In order to identify the water storing tissue in the stem of cowpea plant, the authors performed neutron radiography, which provides a non-destructive image of water distribution pattern in a plant. Common bean plant and soybean plant were used as references. Comparing the neutron radiograph for the stems of the plants, i.e., cowpea, common bean and soybean plants, the parenchymatous tissue with water storing function was distinguished in the intermode between primary leaf and the first trifoliate leaf specifically in cowpea plant.  相似文献   

13.
Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased.  相似文献   

14.
Abstract— The partitioning of plant growth between shoot and root has the potential to affect diverse physiological processes including water and nutrient uptake, nitrogen fixation, light interception, and interactions between plant and soil microorganisms. Root: shoot ratio is determined both by genetics and developmental status as well as by availability of water, nutrients and light. It is shown here that relative root growth was modulated by photomorphogenetic treatments designed to affect phytochrome (supplemental far-red radiation given either as an end-of-day treatment or continuously during the photoperiod) or blue light photoreceptors (blue light-deficient low pressure sodium lamps ± low irradiances of supplemental blue [i.e. 5% of total photon flux: 25 μ.mol m?2 s?1]). Photomorphogenetic control of root: shoot ratio was apparent within1–2 days when light treatments were initiated at emergence, and did not necessarily involve changes in net seedling growth. On the other hand, shortened daylength inhibited early seedling growth but had little effect on partitioning. Changes in relative root dry matter induced by supplemental far red radiation or blue light deficiency were similar to those caused by low irradiances, suggesting that phytochrome or blue light photoreceptors may be involved in regulating the partitioning of growth between shoot and root as a part of adaptation to vegetation shade. The influence of spectral quality on root: shoot ratio should be considered when comparing plants grown under different types of lighting or with different spacing.  相似文献   

15.
The complex characteristics and mechanisms of aluminum pitting corrosion in a solar heating system were studied by the chemical immersion method and electrochemical techniques as well as fractal theory. The results showed that pitting corrosion of Al occurred in a tap water environment due to the local enrichment of Cl? ions. The higher the Cl? ions concentration, the more negative the critical pitting potential (Eb) of Al. A linear relationship between Eb and the logarithm of Cl? ions concentration was observed. The pitting corrosion mechanism of Al in neutral water was explained in terms of complexation corrosion theory. The corrosion surface images of aluminum immersed in tap water were captured and analyzed by image processing technique and box‐dimension method. The fractal characteristics of pit distribution, described by fractal dimension, have been identified. The fractal dimension of the pit distribution increased with the increase of immersion time and had the same trend as that of the weight loss. Fractal dimension can, thus, be used as an important parameter for quantitative evaluation of pitting corrosion of aluminum.  相似文献   

16.
The aim of this study was to find newly structured biopolymer blends bearing those adjustable features able to produce innovative materials. Apart from cellulose derivatives (cellulose carbamate and carboxymethyl cellulose), mannans (guar gum, locust bean gum, and tragacanth gum), xylan, starch (cationized), ι-carrageenan, and xanthan were chosen as blend polysaccharides for cellulose as matrix. In order to study their integration into the cellulose skeleton, fibers were shaped from three different solvents: NaOH by a special wet-spinning process, as well as N-methylmorpholine-N-oxide (NMMO) and 1-ethyl-3-methylimidazolium acetate (EMIMac) via Lyocell technology. The structure and morphologies of the fibers were analyzed by X-ray wide-angle scattering and atomic force microscopy. Hydrophilic/hydrophobic properties were determined by means of a contact angle, as well as moisture content and water retention values, while the surface properties throughout zeta-potential measurements. Being very different processes, the wet spinning in NaOH solution and the dry–wet spinning are deeply impacted by the types of solvent and polysaccharide. The X-ray results for NMMO fibers revealed the highest orientation compared with EMIMac having the lowest orientation of NaOH fibrous types. AFM images also show the lowest surface roughnesses for NMMO and EMIMac fibers. The moisture content and water retention values support these trends, while the water contact angle results show insignificant differences between the samples from EMIMac and NaOH, even though the values calculated for NMMO fibers were the lowest.  相似文献   

17.
Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.  相似文献   

18.
通过化学刻蚀和阳极氧化在AA2024铝合金表面制备超疏水表面。当化学刻蚀时间超过3 min时,表面在很宽pH值范围内显示出水静态接触角大于150°。SEM和AFM照片表明化学刻蚀时间决定了试样表面形貌和粗糙度。FTIR用来研究氟硅烷(G502)与AA2024表面的结合。结果说明FAS(氟硅烷)分子与铝合金表面的三氧化二铝发生反应,并在阳极氧化膜层表面展示出优异的结合性能。超疏水表面的耐腐蚀性能通过在质量分数为3.5%的NaCl溶液中进行动电位极化和交流阻抗(EIS)测试。电化学测试结果和等效电路模型显示出超疏水表面显著改善抗腐蚀性能。  相似文献   

19.
In134Cs uptake by the roots of orchard grass and beans planted in three different lands of soil has been studied. For this purpose, a134Cs radionuclide solution having 0.3086 Ci/pot radioactivity was added to Ando, Serpentine and Alluial and Clay soil which were fertilized by Standard, –K, +Ca, Water limited and Control for both orchard grass and bean groups. Thus, the above mentioned groups have been harvested and left to dry. The contamination levels these plants have been detected and measured by using an HPGe detector interactively working with MCA. Finally, it has been determined that the134Cs uptakes depend primarily on soil characteristics. Besides the decrease in the134Cs activity for the plants grown in soils to which the stable cesium or potassium was added 0.011–1.38 per cent activity for the root of plants grown in free K soils was observed. Moreover, highest134Cs activity has been determined for the plants grown in –K fertilized soil with respect to the other soil samples.  相似文献   

20.
Elemental concentration in each tissue of Japanese morning-glory (Pharbitis nil) during the growth was analyzed by INAA. Plants were grown in water culture for 4 days under 12-hour light and 12-hour dark condition. During the growth, 10 plants in the same developmental stage were periodically harvested. Then the plants were separated into 9 tissues to determine elemental concentration and water content. There was an elemental specific profile within the plant tissue, for example, Na and K concentrations were high in root whereas Mg and Ca concentrations were high at the upper part of the plants. Among the elements studied, Ca and Mg showed rhythmical change in concentration, increased during the day and decreased during the night. This tendency was especially noted at shoot apex. However, water content in all of the tissue was increased about 6 hours prior to the light period and showed maximum in the middle of the light period. About 6 hour difference of water content movement to those of Ca and Mg concentration suggested that water movement drives more dynamic change of each elemental concentration within a plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号