首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473–481, 1998  相似文献   

2.
The zone-drawing method (ZD) was applied to electrochemically synthesized polypyrrole films containing tosylate (PPy/TsO) and the mechanical and electrical properties of the resulting films were investigated. It was found that the electrical conductivity of the zone-drawn film reached 365 S cm−1 in the drawing direction, which was 4.7 times that of the original film. The tensile properties of the zone-drawn film were improved and Young's modulus and strength at break increased to 4.32 GPa and 90.1 MPa from 0.53 GPa and 40.4 MPa of the as-synthesized film, respectively. The dynamic storage modulus (E) increased by the zone-drawing over a whole experimental temperature range and attained 7.0 GPa at room temperature and 4.0 GPa even at 200°C. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

4.
A new two‐stage draw technique was successfully applied to the superdrawing of polytetrafluoroethylene (PTFE) virgin powder. A film, compression‐molded from powder below the melting temperature (Tm = 335 °C), was initially solid‐state coextruded to an extrusion draw ratio (EDR) of 6–20 at 325 °C, about 10 °C below the Tm. These extrudates from the first‐stage draw were further drawn by a second‐stage pin draw in the temperature (Td) range of 300–370 °C that covers the static Tm. The maximum achievable total draw ratio was ~60 at a Td = 300 °C and increased rapidly with increasing Td, reaching a maximum of 100–160 at a temperature window between 340 and 360 °C, depending on the initial EDRs. At yet higher Td's, the ductility was lost as a result of melting. The high ductility of the PTFE extrudates at such high temperatures was ascribed to the improvement of interfacial adhesion and bonding between the deformed powder particles upon the first‐stage extrusion combined with the rapid heating of only a portion of the extrudate followed by the elongation at a high rate. The highly drawn fibers were highly crystalline (χc ≤ 87%) and showed high chain orientation (fc ≤ 0.997) and a large crystallite size along the chain axis (D0015 ≤ 160 nm). The molecular draw ratio, estimated from the entropic shrinkage above the Tm, was close to the macroscopic deformation ratio independently of the initial EDRs. These results indicate that the draw was highly efficient in terms of chain extension, orientation, and crystallization. Thus, the maximum tensile modulus and strength achieved in this work were 102 ± 5 and 1.4 ± 0.2 GPa, respectively, at 24 °C. These tensile properties are among the highest ever reported on oriented PTFE. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1995–2004, 2001  相似文献   

5.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

6.
The elastic moduli El of the crystalline regions of α‐chitin and chitosan in the direction parallel to the chain axis were measured by X‐ray diffraction. The El values were 41 GPa for α‐chitin, and 65 GPa for chitosan, respectively, at 20°C. The contracted skeletons of α‐chitin and chitosan are the key factor for the low El values compared with that (138 GPa) of cellulose I. The El value of α‐chitin was constant at 41 GPa both at −190°C and 150°C, which indicates that the molecular chain of α‐chitin is stable against heat within the temperature and stress range studied. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1191–1196, 1999  相似文献   

7.
Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6–20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45–100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36–48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551–2562, 1998  相似文献   

8.
A series of polyimides containing ether and ketone moieties were synthesized from 1,3‐bis(4‐fluorobenzoyl) benzene and several commercially available dianhydrides via a conventional two‐step polymerization. The inherent viscosities of Polyamide acids ranged from 0.46 to 0.73 dL/g. Thermal properties, mechanical properties, and thermalplasticity of the obtained polimide films were investigated by focusing on the chemical structures of their repeat units. These films were amorphous, flexible, and transparent. All films displayed low Tgs (184–225 °C) but also excellent thermal stability, the 5% weight loss temperature was up to 542 °C under nitrogen. The films showed outstanding mechanical properties with the modulus up to 3.0 GPa and the elongation at break in the range of 8–160%. The uniaxial stretching of PI‐a at high temperature was studied owing to its excellent flexibility. The PI‐a had an elongation at break up to 1600% at 245 °C and the uniaxially stretched film exhibited a much higher modulus (3.9 GPa) and strength (240 MPa) than undrawn film. The results indicated that PI‐a can potentially be used to prepare materials such as fiber, ultra‐thin film or ultra‐high modulus film. All the obtained films also demonstrated excellent thermoplasticity (drop of E′ at Tg > 103) which made the polyimides more suitable for melt processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2878–2884, 2010  相似文献   

9.
A study of the mechanical properties of poly(ferrocenyldimethylsilane) [Fe(η‐C5H4)2SiMe2]n, 3 , a novel organometallic polymer, has been performed on thin films of this material. The Young's modulus and Poisson's ratio of film samples (15 × 1 × 1 mm) of 3 were measured in quasi‐static tension using a video extensometer. For 3 , the values of the Young's moduli (E) and Poisson's ratios (ν) were similar between axes in the plane and independent of the splicing direction used during sample preparation. The mean and standard deviation of the Young's modulus and Poisson's ratio were 0.78 ± 0.08 GPa and 0.37 ± 0.06 GPa, respectively. Thermomechanical analysis of 3 revealed a steady decrease of E from a room temperature value of approximately 0.70 GPa. Additionally, it was found that at 150 °C, 3 was unable to support even small stresses, consistent with the onset of a melt transition (ca. 135 °C). A mathematical model based on molecular geometry is developed to describe the results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2280–2288, 2005  相似文献   

10.
The elastic modulus El of the crystalline regions in the direction parallel to the chain axis was measured by X-ray diffraction for polyimide derived from polyamic acid (biphthalic dianhydride and p-phenylene diamine). These specimens were cured by two different routes: curing at 200 °C, and at 400 °C for 1 h, respectively (2STEPS), and curing from 80 °C to 400 °C stepwise (nine steps) for 1 h at each step (STEPWISE). The El values of 54–169 GPa were obtained for the STEPWISE specimen and 80–178 GPa for the 2STEPS specimen, depending on the meridional reflection employed for measurement of the El value. A linear relationship between the El value and the fiber identity period was obtained from each meridional diffraction, such that the El value increased with an increase in the fiber identity period. The El value of the fully extended structure was estimated to be 210 GPa. These are considered to be due to the coexistence of polymorphs with different skeletal structures. The crystalline regions of the 2STEPS specimen seems to consist of a more extended skeleton than those of the STEPWISE specimen. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3294–3301, 1999  相似文献   

11.
Nylon 46 fibers produced by the high-temperature zone-drawing treatment were treated by repeating high-tension annealing treatments, that is, a high-tension multiannealing (HTMA) treatment to improve their tensile properties. The HTMA treatment was carried out at a repetition time of 10 times and treating temperature of 110°C under high tension (538.2 MPa) close to the tensile strength at break. Although the HTMA treatment was carried out at 110°C, which is much lower than the crystallization temperature of 265°C for nylon 46, the degree of crystallinity increased up to 59%. The orientation factor of crystallites increased dramatically up to 0.949 by the first high-temperature zone-drawing treatment and slightly during the subsequent treatments. This observation indicated that the orientation of crystallites due to slippage among molecular chains did not occur during the HTMA treatment. The treatments shifted the melting peak to slightly higher temperatures, and the HTMA fiber has a melting endotherm peaking at 285°C. The fiber obtained finally had a storage modulus of 12.5 GPa at 25°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2737–2743, 1998  相似文献   

12.
The zone‐drawing (ZD) method was applied three times to the melt‐spun poly(L ‐lactic acid) (PLLA) fibers of low molecular weight (Mv = 13,100) at different temperatures under various tensions. The mechanical properties and superstructure of the ZD fibers were investigated. The resulting ZD‐3 fiber had a draw ratio of 10.5, birefringence of 37.31 × 10−3, and crystallinity of 37%, while an orientation factor of crystallites remarkably increased to 0.985 by the ZD‐1. The Young's modulus and tensile strength of the ZD‐3 fiber respectively attained 9.1 GPa and 275 MPa, and the dynamic storage modulus was 10.4 GPa at room temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 991–996, 1999  相似文献   

13.
The focus of this study is on incorporating pendant sulfonate groups along the backbone of a liquid crystalline polyester (LCPE) with the aim to improve the dispersion of single wall carbon nanotubes (SWNTs) and nanodiamonds (NDs). Two LCPE matrices, one sulfonated (LCPE‐S) and one nonsulfonated reference polymer (LCPE‐R), were successfully synthesized via a melt condensation method using aromatic and aliphatic AB, AA, and BB‐type monomers. Upon the introduction of SWNT and ND particles, the glass transition temperature (Tg) of the sulfonated LCPE increased from 21.5 °C to 41.0 °C and 41.9 °C, for SWNTs and NDs, respectively. When sulfonate groups were absent, a decrease in Tg was observed. The storage modulus (E′) followed a similar trend, i.e., E′ increased from 1.3 GPa to 5.2 GPa and 3.4 GPa, upon the addition of NDs and SWNTs. The LCPE‐S showed a lower thermal stability due to the loss of sulfonate groups, i.e. the 5% weight loss temperature (T) is ~280 °C for LCPE‐S vs. 333 °C for LCPE‐R. The decomposition temperature increased somewhat upon addition of the nanoparticles. The ability of dispersing carbon‐based nanostructures combined with an accessible melt processing window makes sulfonated LCPs attractive matrices towards preparing nanocomposites with improved thermal and mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

14.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

15.
A new diacid monomer containing a pendent adamantyl ring was reacted with various aromatic diamines to prepare novel aromatic polyisophthalamides (PIPAs). The polymers were obtained in high yield and high molecular weight by the Yamazaki‐Higashi phosphorylation method of polycondensation. Inherent viscosities ranged from 0.40 to 0.82 dL/g, which corresponds to weight‐average and number‐average molecular weights (GPC) in the range 21,000–63,000 g/mol and 9000–31,000 g/mol, respectively. The polymers were essentially amorphous and soluble in a variety of polar aprotic solvents, and they afforded transparent, creasable films by the solution‐casting method. The great size of the polyhedral adamantyl moiety brought about a significant restriction of segmental mobility, which translated into a strong increase of Tg, so that very high glass transition temperatures were observed, in the range 335–370 °C (DSC), which are 70–90 °C above the glass transition temperatures of homologous PIPAs without pendent groups. Thus, it can be stated that these adamantyl containing polyamides are among the soluble aromatic PIPAs with highest Tg ever described. Conversely, the initial decomposition temperature, as measured by thermogravimetric analysis, was about 400 °C, which is lower by 40–70° than that of unsubstituted counterparts. Polymer films exhibited good mechanical properties, with tensile strengths over 65 MPa and tensile moduli between 2.0 and 2.6 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1743–1751, 2010  相似文献   

16.
Poly(ethylene‐2,6‐naphthalate) fibers were zone‐drawn under a critical necking tension (σc) defined as the minimum tension needed to generate a necking at a given drawing temperature (Td). In the zone drawing under σc, the neck was observed from 110 to 160 °C. The superstructure in a neck zone induced at each Td was studied. The σc value decreased exponentially with increasing Td and dropped to a low level at a higher Td. The draw ratio increased rapidly with Td increasing above 90 °C, but the birefringence and degree of crystallinity decreased gradually. To study the molecular orientation in the neck zone, we measured a dichroic ratio (A/A?) of a C? O band at 1256 cm?1 along a drawing direction in the neck zone with a Fourier transform infrared microscope. A/A? at Td = 110 °C increased rapidly in the narrow neck zone, and that at Td = 140 °C increased in the edge of the wide neck zone. Wide‐angle X‐ray diffraction patterns of the fibers obtained at Td = 130 °C and lower showed three reflections due to an α form, but those at Td = 140 and 150 °C had reflections due to the α form and a β form. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1629–1637, 2001  相似文献   

17.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

18.
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

19.
Highly crystalline samples of cellulose triacetate I (CTA I) were prepared from highly crystalline algal cellulose by heterogeneous acetylation. X‐ray diffraction of the prepared samples was carried out in a helium atmosphere at temperatures ranging from 20 to 250 °C. Changes in seven d‐spacings were observed with increasing temperature due to thermal expansion of the CTA I crystals. Unit cell parameters at specific temperatures were determined from these d‐spacings by the least squares method, and then thermal expansion coefficients (TECs) were calculated. The linear TECs of the a, b, and c axes were αa = 19.3 × 10?5 °C?1, αb = 0.3 × 10?5 °C?1 (T < 130 °C), αb = ?2.5 × 10?5 °C?1 (T > 130 °C), and αc = ?1.9 × 10?5 °C?1, respectively. The volume TEC was β = 15.6 × 10?5 °C?1, which is about 1.4 and 2.2 times greater than that of cellulose Iβ and cellulose IIII, respectively. This large thermal expansion could occur because no hydrogen bonding exists in CTA I. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 517–523, 2009  相似文献   

20.
Effects of ferrite nanoparticles (0.1–20 wt %) on the rheological and other physical properties of nylon‐66 were investigated. The presence of ferrite nanoparticles less than 1 wt % increased the crystallization temperature (Tc) by 4.2 °C with ferrite content, but further addition decreased Tc. The onset temperature of degradation was increased by 7.3 °C at only 0.1 wt % loading of ferrite, after which the thermal stability of nylon‐66 was decreased with ferrite content. The incorporation of ferrite nanoparticles more than 5 wt % increased the dynamic viscosity (η′) with the loading level. Further, it produced notably shear thickening behavior in the low frequency, after which high degree of shear thinning was followed with ferrite content. In the Cole–Cole plot, the nanocomposites with ferrite lower than 5 wt % presented a single master curve, while further addition gave rise to a deviation from the curve. The relaxation time (λ) was increased with ferrite content and the difference of λ between nylon‐66 and its nanocomposite was greater at lower frequency. The tensile strength was a little increased up to 1 wt % loading, after which it was decreased with increasing the loading level. In addition, the introduction of the nanoparticles increased tensile modulus and decreased the ductility with ferrite content. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 371–377, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号