首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl alcohol) (PVA) was reacted with strong base NaH to yield pendant oxy anions, followed with nucleophilic addition to C60. The resulted PVA(C60-Na+)n products were then converted to PVA(C60H)n by stirring with a strong acid cation exchanger of H+-form. Extraction of the C60-containing PVAs by toluene, which is a good solvent for C60, exhibits no color transfer to the toluene phase. The C60-containing PVAs were identified by the characteristic IR and UV-Vis absorptions of C60. The electrochemical behaviors in solution or in film state were investigated by cyclic voltammetric methods. The cyclic voltammogram of 4a shows a reduction peak at −2.30 V which should be due to the bonded C60 chromophores. In the film state, obtained by coating C60-containing PVA solution on graphite electrode, PVA(C60-Na+)n is much easily reduced and oxidized than PVA(C60H)n. Furthermore, the difference in this reduction and oxidation feasibility is enhanced with increasing C60 content. However, coating with PVA(C60H)n or PVA(C60-Na+)n reduces the redox ability of the graphite electrode.  相似文献   

2.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and 1‐vinyl‐2‐pyrrolidone (VP) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depressions of the melting temperatures of PVA segments in IPNs were observed with increasing VP content via the DSC. The DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated using TGA and appeared at near 270°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1844–1847, 2002  相似文献   

3.
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences.  相似文献   

4.
5.
The effects of tacticities on the characteristics of poly(vinyl alcohol) (PVA) nanowebs prepared by an electrospinning technique were investigated. PVA webs composed of uniform nanofibers with syndiotactic dyad (s‐dyad) contents of 53.5 and 57.3% were successfully obtained with electrospinning. By changing processing parameters such as the initial polymer concentration, applied voltage, and tip‐to‐collector distance, we found suitable conditions for forming PVA webs with uniform nanofibers. PVAs of higher s‐dyad contents were prepared at a lower solution concentration and at a higher applied voltage because of the easy formation of syndiotactic PVA chain entanglements at a very low polymer concentration. The average diameter of the nanofibers in a PVA web with the higher s‐dyad content of 57.3% (ca. 240 nm) was thinner than that of the nanofibers in a PVA web with the lowers‐dyad content of 53.5% (ca. 270 nm). In addition, the crystallinity and thermal stability were greatly increased with an increase in the s‐dyad content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Branched and network poly(vinyl alcohols) (PVAs) were prepared with inter-acetalization of the PVA with aldehyde groups at the chain ends which was prepared by the cleavage of 1,2 glycol bonds in commercial PVA. The numbers of branches estimated from molecular weights were compared with those estimated by theory. Huggins' constant and crystallinity decreased with increasing branch number. Dissolution of branched PVAs into dimethylsulphoxide was not so easy compared with commercial PVA. The colour of branched PVA–iodine complex decreased rapidly with standing while that of commercial PVA decreased gradually. Network PVAs with Young's modulus of 1–8 MPa were prepared.  相似文献   

7.
Poly(ethylene oxide), poly(vinyl alcohol), and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water present in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2147–2157, 1998  相似文献   

8.
Blended membranes of hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(vinyl amine) (PVAm) were prepared and crosslinked with glutaraldehyde. The prepared membranes were characterized using infrared (attenuated total reflection mode) spectroscopy, differential scanning calorimetry, X‐ray diffractometry, and scanning electron microscopy measurements. Pervaporation performances of the membranes were evaluated for the separation of water‐isopropanol (IPA) mixtures. As the PVAm content increased from PVAm0 to PVAm1.5, the flux through a 70 μm film increased from 0.023 to 0.10 kg/mh at an IPA/water feed ratio of 85/15 at 30 °C. The driving force for permeation of water increased due to the temperature but it has no effect on IPA permeation. Activation energies for the permeation of IPA and water were calculated to be 17.11 and 12.46 kJ/mol, respectively. Controlling the thickness of the blend membrane could improve the permeation flux with only a marginal reduction in the separation factor. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45572.  相似文献   

9.
We aim to couple the electrospinning in‐line with solution chemistry to fabricate novel crosslinked polymer nanofibers. Poly(vinyl alcohol) (PVA) was used as a model polymer due to its high amount of hydroxyl groups. To obtain ideal parameters for electrospinning, pure PVA was explored primarily. To gain crosslinked fibers, PVA was first crosslinked partially with glutaraldehyde (GA) followed by transferring this precursor to a long hot tube which was used as reactor and then electrospun right before gelation. The preheating time and tube‐passing time were determined with viscometer and rheometer. The reactive as‐spun fibers could maintain their original morphology after water immersion due to their high crosslinking degree. The thermal stability and mechanical property of reactive as‐spun fibers were improved drastically compared with pure and GA vapor crosslinked PVA fibers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Triethoxysilane HSi(OEt)3 was used as coupling agent to graft a poly(organophosphazene) (POPZ) containing allylic functions to the surface of poly(vinyl alcohol) or poly(ethylene-co-vinyl alcohol) films. Hydrolyzed HSi(OEt)3, which contained both inorganic (Si–OH) and organic (Si–H) reactivities, acted at the interface between the hydroxylated substrates (via a condensation reaction) and the allylic functions in POPZ (via a hydrosilylation reaction). Starting materials and grafting surfaces were studied by ATR-IR and XPS spectroscopies and contact angle measurements. Data obtained indicated that different POPZ layers were produced, depending on whether the functionalization of materials with silane, and the grafting reaction were separately or simultaneously made. The POPZ layer thickness was higher when the grafting reaction was preceded by the POPZ functionalization. In each cases, the modified surfaces showed marked increases in hydrophobicity character. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1965–1974, 1998  相似文献   

11.
Effects of individual and composed poly(vinyl alcohol) (PVA) suspending agents on the particle morphology of poly(vinyl chloride) (PVC) resins were investigated and discussed in the view of PVA absorption at the oil/water interface and interfacial behavior. It was shown that the percentage and surface coverage of PVA at the oil/water interface decreased with the increase of the degree of hydrolysis (DH) of PVA in the DH range of 70–98 mol %, while the interfacial tension of VC/PVA aqueous solution increased linearly with the increase of DH of PVA. PVC resin with more regular particle shape, increased agglomeration and fusion of primary particles, lower porosity and higher bulk density, was prepared by using PVA with a higher DH as a suspending agent. This was caused by the occurrence of drop coalescence at the very early stage of VC polymerization, the increase of particle shrinkage, and the lower colloidal protection to primary particles. It was also shown that the interfacial tension of VC/water in the presence of composed PVA suspending agents varied linearly with the weight composition of the composed PVA suspending agents. The particle properties of PVC resin prepared by using the composed PVC suspending agents were usually situated in between the properties of PVC resins prepared by using the corresponding individual PVA suspending agent. The particle morphology and properties of PVC resin could be controlled by the suitable choice of the composed PVA suspending agents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3848–3855, 2003  相似文献   

12.
Poly(vinyl alcohol) (PVA) can be dissolved in a nonaqueous medium in the presence of catalytic concentration of ethyl nitrate dimethyl sulfoxide, C2H5ONO2·DMSO. From the PVA solution, poly(vinyl propionate), PVPR was prepared by the homogeneous esterification of PVA with propionic acid. The ester thus formed contained some unconverted hydroxyl group. The formation of the ester was confirmed by the IR and 1H‐NMR spectra. The molecular weight of the ester was determined by GPC and intrinsic viscosity (η) was determined by viscometric method. Glass transition temperature, Tg, was obtained from differential scanning calorimetric (DSC) analysis. Thermal stabilities of the ester were checked by thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) analysis. The efficiency of the ester as a flow improver of crude oil was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5675–5679, 2006  相似文献   

13.
聚乳酸/聚乙烯醇纳米纤维的制备及结构   总被引:1,自引:0,他引:1  
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。  相似文献   

14.
Poly(N‐vinyl pyrrolidone) (PVP) and poly (vinyl alcohol) (PVA) homopolymers and their blended samples with different compositions were prepared using cast technique and subjected to X‐ray diffraction (XRD) measurements, infrared (IR) spectroscopy, ultraviolet/visible spectroscopy, and thermogravimetric analysis (TGA). XRD patterns of homopolymers and their blended samples indicated that blending amorphous materials, such as PVP, with semicrystalline polymer, such as PVA, gives rise to an amorphous structure with two halo peaks at positions identical to those found in pure PVP. Identification of structure and assignments of the most evident IR ‐ absorption bands of PVP and PVA as well as their blends in the range 400–2000 cm?1 were studied. UV–vis spectra were used to study absorption spectra and estimate the values of absorption edge, Eg, and band tail, Ee, for all samples. Making use of Coats‐Redfern relation, thermogravimetric (TG) data allowed the calculation of the values of some thermodynamic parameters, such as activation energy E, entropy ΔS#, enthalpy ΔH, and free energy of activation ΔG# for different decomposition steps in the samples under investigation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A series of polymer-clay nanocomposite (PCN) materials that consist of poly(vinyl alcohol) (PVA) and layered montmorillonite (MMT) clay are prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic PVA matrix via an in situ free radical polymerization with AIBN as initiator. Organic vinyl acetate monomers are first intercalated into the interlayer regions of organophilic clay hosts and followed by a one-step free radical polymerization. The prepared poly(vinyl acetate)-clay (PVAc-clay) solution are then saponified via direct-hydrolysis with NaOH solution to form PVA-clay nanocomposite materials. The as-synthesized PCN materials are typically characterized by Fourier-Transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction and transmission electron microscopy.The molecular weights of poly(vinyl alcohol) (PVA) extracted from polymer-clay nanocomposite (PCN) materials and bulk PVA are determined by gel permeation chromatography (GPC) analysis with THF as eluant. The viscosity property of PCN materials with different feeding amount of MMT clay is studied by an ubbelohode capillary viscometer. The morphological image of as-synthesized materials is studied by scanning electron microscopy (SEM) and optical polarizing microscope (OPM). Effects of the material composition on the thermal stability, mechanical strength, optical clarity of PVA along with a series of PCN materials, in the form of fine powder and free-standing film, are also studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA) and UV-visible transmission spectra, respectively.  相似文献   

16.
Diffusivities of methyl acetate, methanol and water in poly(vinyl acetate) and fully and partially hydrolyzed poly(vinyl alcohol) have been measured by capillary column inverse gas chromatography and/or gravimetric sorption. Data from the literature have been used when available for comparison. Overall the diffusivities show good consistency in terms of their temperature and concentration dependences. The free‐volume model has been applied to all the data with excellent results. In most cases the dramatic changes in diffusivities with temperature and concentration can be captured using only a few experimental data points and two regression parameters. This demonstrates that the free‐volume theory is a valuable tool for the design of equipment for processing and devolatilization of polymer ? solvent systems. © 2013 Society of Chemical Industry  相似文献   

17.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

18.
Poly(vinyl alcohol) (PVA) was modified with phthalic anhydride to obtain half esters with carboxylic acid groups, which made the reaction with epichlorohydrin easier. The oxirane ring underwent a further crosslinking that led to crosslinked polymers with polar groups capable of interacting strongly with water and therefore with properties of hydrogels. The curing kinetics of the crosslinking were studied by differential scanning calorimetry, and the dependence of the activation energy on conversion degree was studied by isoconversional kinetic analysis. Water absorption was determined gravimetrically as a function of time at room temperature. The swelling behavior of these hydrogels was related to the degree of crosslinking. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 693–698, 2003  相似文献   

19.
Poly(vinyl alcohol) (PVA) was dissolved in the water to make a 10 wt % aqueous solution, and polydimethylsiloxane (PDMS) was mixed with 1 wt % 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and 0.5 mol % methylenebisacrylamide (MBAAm) in isopropyl alcohol. This mixture was added to a PVA aqueous solution and heated at 90°C for 7 h. Various crosslinked networks were prepared at different molar ratios of PVA/PDMS (1:1, 1:3, and 3:1). The characterization of PVA/PDMS crosslinked networks was determined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), a universal testing machine (UTM), and the equilibrium water content (EWC). The DSC melting endotherms showed, at 219.49°C, a sharp endothermic peak of PVA, and PVA/PDMS crosslinked networks had melting peaks close to this point. The value of EWC increased with the content of PVA in the crosslinked networks, simultaneously depending on the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 957–964, 2002  相似文献   

20.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号