首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of functional end groups on the thermal stability of poly(lactic acid) (PLA) in nitrogen‐ and oxygen‐enriched atmospheres has been investigated in this article using differential scanning calorimetry, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Functional end groups of PLA were modified by succinic anhydride and l ‐cysteine by the addition–elimination reaction. PLA was synthesized by azeotropic condensation of l ‐lactic acid in xylene and characterized by nuclear magnetic resonance. The values of the activation energies determined by TGA in nitrogen and oxygen atmospheres revealed that the character of functional end groups has remarkable influence on the thermal stability of PLA. Moreover, DMA confirmed the strong influence of functional end groups of PLA on polymer chains motion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41105.  相似文献   

2.
1,6‐hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) were copolymerized in different weight ratios using UV light induced photo‐polymerization to give poly(HDDA‐co‐MMA). Differential scanning calorimetry shows that copolymer was formed. The thermogravimetric and differential scanning calorimetric studies with different heating rates were carried out on these copolymers to understand the nature of degradation and to determine its kinetics. Different kinetic models were adopted to evaluate various parameters like the activation energy, the order, and the frequency factor. These analyses are important to study the binder removal from 3D‐shaped ceramic objects made by techniques like Solid free form fabrication. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
This paper describes the synthesis and characterization of a bisphthalonitrile monomer having an imide linkage prepared by reacting 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride with 4‐(4‐aminophenoxy) phthalonitrile. The structure of the monomer was confirmed by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. The curing behavior of bisphthalonitrile monomer was investigated in the absence or presence of different diamines using differential scanning calorimetry. Diamines 4,4′‐diaminodiphenyl ether (DDE) and 4,4′‐diaminodiphenylsulfone (DDS) were used to investigate the effect of the structure of diamines on the curing behavior of bisphthalonitrile monomer. An exothermic transition due to curing was observed in the DSC scan, and the curing temperature was found to be dependent on the nucleophilicity of the amine. DDE was found to be more reactive than DDS. The thermal stability of the cured resins was evaluated using thermogravimetry in nitrogen atmosphere. All of the cured samples were stable up to 400 °C and leave behind 62% char residue at 800 °C, which was found to be dependent on the structure of the diamine used for curing as well as on the curing conditions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46151.  相似文献   

5.
以氧化锌、脂肪族二羧酸、聚乙二醇为原料合成含锌聚醚酯(PEEM),再将PEEM与聚己内酰胺低聚合物反应,制备含锌聚醚酯酰胺(PEEAM),借助差示扫描量热法(DSC)、热重(TG)分析,研究了PEEAM的热性能。结果表明:PEEAM呈双熔融和双结晶峰,随PEEM含量增加,PEEAM中PEEM链段的熔融温度降低,熔融热焓增大,聚酰胺链段的熔融温度略有下降,结晶放热和结晶温度随PEEM含量变化有最小值;PEEAM中含脂肪族二羧酸种类不同,其相应的熔融温度、熔融热焓、结晶温度及结晶放热不同,没有明显规律可循。脂肪族二羧酸种类对PEEAM的初始降解温度和最大质量损失温度没有明显影响。PEEM含量增大,PEEAM的热失重速率增大。  相似文献   

6.
A high‐performance difunctional epoxy resin, 4‐(4‐hydroxyphenoxy)phenol diglycidyl ether (DHPOP), was synthesized by a two‐step method. The curing behavior of DHPOP was investigated by nonisothermal differential scanning calorimetry method and the curing kinetics results revealed that the introduction of ether linkage could improve the activity of epoxy groups, leading to a lower curing temperature and apparent activation energy compared with that of the commercial bisphenol‐A diglycidyl ether (DGEBA). A series of copolymers were then prepared by varying the mass ratio of DHPOP and DGEBA, which were cured with 4,4′‐diaminodiphenyl methane. The effect of DHPOP contents on thermal and mechanical properties and fracture morphology was studied. As expected, with the increase of DHPOP in the network, the impact strength and char yield were significantly enhanced, while the glass transition temperature (Tg) remained unchanged because of the increase of crosslink density. The excellent toughness endows the DHPOP with the promising potential for the application as high‐performance resin matrix. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46458.  相似文献   

7.
A series of new segmented semifluorinated polyaryl ethers (PAEs) containing a biphenyl segmented by semifluorinated oligoethylene (SFE) units were prepared by nucleophilic addition of a commercial oligo(ethylene glycol)s to 4,4′‐bis(4‐trifluorovinyloxy)biphenyl. These new thermoplastics were characterized by 1H and F19 nuclear magnetic resonance (NMR) and attenuated total reflectance Fourier transform infrared (ATR‐FTIR). Gel permeation chromatography (GPC) analysis displayed number average molecular weights (Mns) from 9000 to 13,000. Thermal properties of the polymers were studied by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC chromatograms displayed glass transition temperatures (Tgs) from 11 to 1°C. The onsets of degradations were observed by TGA analysis between 313 to 333°C in air and 326 to 363°C in nitrogen, respectively. A second onset of degradation was observed from 452 to 470°C for all polymers. In addition, crystalline morphologies were studied by tapping mode atomic force microscopy (TM‐AFM) and showed needle‐like crystallites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41798.  相似文献   

8.
A series of poly(urethane)s (PUs) based on diphenyl‐silane or ‐germane and oxyphenyl units were synthesized by polycondesation of 4‐[4‐[9‐[4‐(4‐aminophenoxy)‐3‐methyl‐phenyl]fluoren‐9‐yl]‐2‐methyl‐phenoxy]aniline (3) and four bis(chloroformate)s ( I–IV ). These monomers were prepared and characterized in previous works. The best conditions for the polymerization reactions were investigated by a kinetic study. Also, a selection of the best solvent for the reaction was developed. Polymers were characterized by IR and 1H, 13C, and 29Si‐NMR spectroscopy and the results were in agreement with the proposed structures. Poly(urethane)s showed inherent viscosity values between 0.12 and 0.31 dL/g, indicative of low molecular weight species, probably of oligomeric nature. The glass transition temperature (Tg) values were observed in the 127–168°C range by DSC analysis. Thermal decomposition temperature (TDT10%) values were above 300°C. All PUs showed good transparency in the visible region (>80% at 350 nm) due to the incorporation of the bulky monomer (fluorene) and oxyether linkages. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Due to their interesting properties, zwitterionic polymers have been extensively studied; however, only a few reports discuss their thermal degradation. The objective of this work was to study the pattern of thermal degradation of three poly(sulfobetaines) with different lateral chain lengths and the relationship between structure and degradation mechanism of the polymers. Because the initial decomposition temperatures are not significantly different in polymers with different ethylene glycol residues, it was possible to study the thermal behavior of these polymers at the same temperature range. The apparent activation energies of the degradation for polymers, calculated by the Ozawa method, was different for each poly(sulfobetaine). A decomposition mechanism is suggested, which included a Hoffman elimination of the quaternary amine giving vinyl ethers, which in turn, decompose to carboxylic acids, which can suffer and intramolecular cyclization reaction, and finally produce a polypropylene like chain. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1409–1414, 1999  相似文献   

10.
Thermomechanical behavior of membranes based on blends of poly(vinyl alcohol) (PVA) with different weight percentage (wt %) of glycerol has been studied. Solid‐state PVA/Glycerol polymer membranes were prepared by a solution casting method. The films were studied for thermal characteristics by differential scanning calorimetry (DSC) and thermogravimetric analysis and for the mechanical properties including hardness and modulus by nanoindentation method. The dispersion of glycerol within the polymer matrix was examined using scanning electron microscopy. Fourier transform infrared spectroscopy was used to confirm the formation of hydrogen bonding between the plasticizer and PVA in their blends and also to provide information on compatibility and physical interactions between the glycerol and PVA. It was found that the thermal properties particularly the melting point (Tm) for PVA blends exhibit a reduced value proportional to the glycerol content. The hardness and elastic modulus were also found to decrease with an increase in plasticizer content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The effect of tacticity on the interfacial region between poly(methyl methacrylate) (PMMA) and silica in a PMMA/silica nanocomposite was investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The glass transition temperature (Tg) values of the syndiotactic (st-) and atactic (at-) PMMA/silica nanocomposites are higher than those of the neat PMMA. Conversely, the Tg of the isotactic (it-) PMMA/silica nanocomposite is slightly higher than that of the neat it-PMMA. DSC and XRD results suggest that the restriction of the PMMA chain mobility in the silica nanoparticle interfacial region heightens as the syndiotactic content increases. FT-IR results show that this phenomenon is caused by the interaction between the carbonyl group of PMMA and the silanol group on the silicon dioxide surface. Therefore, it can be concluded that the syndiotactic-rich PMMA has a significantly different molecular mobility from that of the neat PMMA in the interfacial region with silica nanoparticle surface than isotactic-rich PMMA.  相似文献   

12.
To determine the degree of compatibility between poly(lactic acid) and different biomaterials (fibers), poly(lactic acid) was compounded with sugar beet pulp and apple fibers. The fibers were added in 85 : 15 and 70 : 30 poly(lactic acid)/fiber ratios. The composites were blended by extrusion followed by injection molding. Differential scanning calorimetry and thermogravimetric analysis were used to analyze the extruded and extruded/injection‐molded composites. After melting in sealed differential scanning calorimetry pans, the composites were cooled through immersion in liquid nitrogen and aged (stored) at room temperature for 0, 7, 15, and 30 days. After storage, the samples were heated from 25 to 180°C at 10°C/min. The neat poly(lactic acid) showed a glass‐transition transition at 59°C with a change in heat capacity (ΔCp) value of 0.464. The glass transition was followed by crystallization and melting transitions. The enthalpic relaxation of the poly(lactic acid) and composites steadily increased as a function of the storage time. Although the presence of fibers had little effect on the enthalpic relaxation, injection molding reduced the enthalpic relaxation. The crystallinity percentage of the unprocessed neat poly(lactic acid) dropped by 95% after extrusion and by 80% for the extruded/injection‐molded composites. The degradation was performed in air and nitrogen environments. The degradation activation energy of neat poly(lactic acid) exhibited a significant drop in the nitrogen environment, although it increased in air. This meant that the poly(lactic acid) was more resistant to degradation in the presence of oxygen. Overall, injection molding appeared to reduce the activation energy for all the composites. Sugar beet pulp significantly reduced the activation energy in a nitrogen environment. In an air environment, both sugar beet pulp and apple fibers increased the activation energy. The enzymatic degradation of the composites showed a higher degradation rate for the extruded samples versus the extruded/injection‐molded composites, whereas the apple composites exhibited higher weight loss. The thermogravimetric analysis data showed that the degradation of unprocessed and extruded neat poly(lactic acid) followed a one‐step mechanism, whereas extruded/injection‐molded composites showed two‐step degradation. A higher fiber content resulted in up to three‐step degradation mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
The miscibility of poly(vinyl chloride) (PVC) and a biodegradable aliphatic–aromatic copolyester (AAC) was investigated by differential scanning calorimetry. The thermooxidative degradation of the blends was investigated thermogravimetrically. The blends were prepared by dissolution in 1,2‐dichloroethane and precipitation with methanol. The investigated blends were completely miscible with the glass‐transition temperatures best predicted by the Fox equation. Fourier transform infrared analysis showed that the interactions responsible for miscibility were the hydrogen bonds between the blend components. The thermooxidative stability of the PVC/AAC blends was improved compared to that of pure PVC. Furthermore, when AAC was added, the dehydrochlorination rate of PVC decreased, and the maximum rate shifted to a higher temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2158–2163, 2006  相似文献   

14.
The phenomenon of enthalpic relaxation was evaluated for poly(lactide‐co‐glycolide) (PLGA, 50:50), in terms of storage of nanospheres for use as a controlled drug delivery system. Samples were stored for different times and temperatures below the glass transition temperature (Tg). Relaxation occurred at a significant rate up to 15 degrees below the Tg of 39.2°C. The effect of polymer morphology was considered by comparing the relaxation kinetics of the raw polymer with that of nanospheres formed using a novel technique. The nanospheres were shown to have a larger change in heat capacity at the glass transition and a longer average relaxation time than that of the raw polymer, and the relationship between these two parameters was discussed. For both the raw polymer and the nanospheres, relaxation was found to occur at a significant rate at room temperature. The storage of this system at subambient temperatures was therefore deemed important for maintaining the physicochemical properties of the system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1868–1872, 2002  相似文献   

15.
Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) have been used in conjunction with tensile testing and transmission electron microscopy (TEM) to characterise novel segmented poly(urethane-urea) (PUU) network materials formed by reaction injection moulding (RIM). Materials were based on a modified liquid 4,4′-diphenylmethane diisocyanate and a polyether triol in admixture with one of three hindered aromatic diamines: 3,5-diethyltoluene diamine (DETDA); methylene-bis-2,6-diisopropylaniline (MMIPA); methylene-bis-(2-methyl-6-isopropylaniline) (MMIPA). The materials ranged from tough translucent elastomers to opaque brittle plastics depending on the chemical nature and weight fraction of the hard segments (HS). DSC and DMTA studies showed the PUU materials to be phase-separated; this was confirmed by TEM and tensile testing. The soft-segment glass transition temperatures (DSC and DMTA) were independent of composition but varied with diamine structure. Hard-segment glass transition temperatures could only be evaluated by DMTA and no evidence of crystallinity was found by thermal methods or by wide angle x-ray diffraction. Heat capacity measurements and DMTA suggested that some degree of phase mixing had occurred, to a greater extent in the DETDA and MDIPA systems. Phase inversion was observed by DMTA and confirmed at ~55% hard-segment content for DETDA systems by tensile testing.  相似文献   

16.
A series of phosphorus‐containing, wholly aromatic thermotropic copolyesters from acetylated 2‐(6‐oxide‐6H‐dibenz〈c,e〉〈1,2〉oxa phosphorin‐6‐yl)‐1,4‐dihydroxy phenylene, p‐acetoxybenzoic acid, terephthalic acid, and isophthalic acid were prepared by melting polycondensation. The structure and basic properties of the polymers, such as the glass‐transition temperature (Tg), melting temperature (Tm), thermal stability, crystallinity, and liquid crystallinity, were investigated with Fourier transform infrared, elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray diffraction, and hot‐stage polarizing optical microscopy. The copolyesters had relatively high Tg values ranging from 183 to 192°C. The Tm values obtained from DSC curves for samples P‐20 and P‐25 were 290 and 287°C, respectively (where the number in the sample name indicates the molar fraction of the phosphorus‐containing monomer in the reactants). The initial flow temperatures of other samples observed with hot‐stage polarizing microscopy were 271–290°C. The 5% degradation temperatures in nitrogen ranged from 431 to 462°C, and the char yields at 640°C were 41–52%. All the copolyesters, except P‐40, were thermotropic and nematic. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1278–1284, 2002  相似文献   

17.
Two AB-type monomers 4-fluoro -N-(4-(2-(4-hydroxyphenyl) propan-2-yl) phenyl) benzamide and 4-fluoro -N-(5-hydroxy naphthyl) benzamide were synthesized. The AB-type poly(ether-amide)s (PEAs) were derived by self-polymerization via the nucleophilic aromatic displacement reaction of AB-type monomers. The structure of AB-type monomers and PEAs were confirmed by FT-IR and H1-NMR spectroscopy. The PEAs were characterized by TGA, DSC, XRD, solution viscosity and solubility. X-ray diffraction studies indicated that the poly (ether-amide)s were amorphous. Poly(ether-amide)s exhibited excellent thermal stability and solubility. All the PEAs were readily soluble at room temperature in polar aprotic solvent DMSO, NMP and DMAc and also in less polar solvents such as m-cresol and pyridine.  相似文献   

18.
In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l ‐lactic acid), poly(β‐hydroxybutyrate), and different kinds of thermoplastic starches. Differential scanning calorimetry (DSC) (dynamic and isothermal conditions), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) were used to determine the influence of the biodegradable polymer in the behavior of the biomedical formulations. DSC assay revealed a strong dependence of the polymerization enthalpy (ΔHcur) with increasing solid : liquid ratio and a low influence of the nature of the added biodegradable polymer on glass transition. TGA analysis showed the different mechanism of PMMA‐biodegradable polymer interaction depending on the solubilization of the added polymer in methylmethacrylate monomer during curing. DMTA showed the reinforcing capacity of segregated phases of the polymer included in the cement. The solubilization of aliphatic polyesters in the resulting PMMA polymerized phase led to a drop in mechanical stiffness observed from storage modulus (E′) profiles. Moreover, tan δ shifts to higher temperatures (4–7°C) during a second scan, confirming the presence of residual monomer content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
To further improve the processability of water plasticized poly(vinyl alcohol) (PVA), boric acid (BA), which can rapidly form reversible crosslinked structure with the hydroxyl groups of PVA, was adopted as a modifier, and the water states, thermal performance, and rheological properties of modified PVA were investigated. The results showed that ascribing to the formation of the crosslinked structure between PVA and BA, the content of nonfreezing water in system increased, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remained in system to play the role of plasticizer. Meanwhile, this crosslinked structure shielded part hydroxyl groups in PVA chains, leading to the further weakening of the self‐hydrogen bonding of PVA, and guaranteeing a lower melting point and higher decomposition temperature, thus obtaining a quite wide thermal processing window, i.e., ≥179°C. The melt viscosity of BA modified PVA slightly increased, but still satisfied the requirements for thermal processing, thus reinforcing the flow stability of the melt at high shearing rate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43246.  相似文献   

20.
Differential scanning calorimetry (d.s.c.) was used to investigate the thermal behaviour of cyclic and linear poly(dimethylsiloxanes) over the temperature range 103–298 K. Fractions of the polymers studied had number-average molar masses in the range 160 < Mn < 25 500 g mol?1 and heterogeneity indices MwMn < 1.1 in most cases. D.s.c. was applied to measure the glass transition temperatures Tg cold crystallization temperatures Tc and polymer crystalline melting temperatures Tm of the oligomer and polymer fractions. Cyclic siloxanes [(CH3)2SiO]x with number-average numbers of skeletal bonds nn in the range 24 ≦ nn ≦ 79 and linear siloxanes (CH3)SiO[(CH3)2SiO]ySi(CH3)3 with nn in the range 10 ≦ nn ≦ 40 were found not to crystallize. The Tg values of the linear siloxanes were found to be in agreement with values in the literature and they increased with increasing Mn. By contrast, the Tg values of the cyclics were found to decrease with increasing Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号