首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants’ responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.  相似文献   

10.
11.
12.
13.
Long noncoding RNAs (lncRNAs) are a class of RNA molecules with gene regulatory functions in plant development and the stress response. Although the number of lncRNAs identified in plants is rapidly increasing, very little is known about their role in barley development. In this study, we performed global identification of barley lncRNAs based on 53 RNAseq libraries derived from nine different barley tissues and organs. In total, 17,250 lncRNAs derived from 10,883 loci were identified, including 8954 novel lncRNAs. Differential expression of lncRNAs was observed in the developing shoot apices and grains, the two organs that have a direct influence on the final yield. The regulatory interaction of differentially expressed lncRNAs with the potential target genes was evaluated. We identified 176 cis-acting lncRNAs in shoot apices and 424 in grains, while the number of trans-acting lncRNAs in these organs was 1736 and 540, respectively. The potential target protein-coding genes were identified, and their biological function was annotated using MapMan ontology. This is the first insight into the roles of lncRNAs in barley development on the genome-wide scale, and our results provide a solid background for future functional studies.  相似文献   

14.
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. HCC is associated with several etiological factors, including HBV/HCV infections, cirrhosis, and fatty liver diseases. However, the molecular mechanism underlying HCC development remains largely elusive. The advent of high-throughput sequencing has unveiled an unprecedented discovery of a plethora of long noncoding RNAs (lncRNAs). Despite the lack of coding capacity, lncRNAs have key roles in gene regulation through interacting with various biomolecules. It is increasingly evident that the dysregulation of lncRNAs is inextricably linked to HCC cancer phenotypes, suggesting that lncRNAs are potential prognostic markers and therapeutic targets. In light of the emerging research in the study of the regulatory roles of lncRNAs in HCC, we discuss the association of lncRNAs with HCC. We link the biological processes influenced by lncRNAs to cancer hallmarks in HCC and describe the associated functional mechanisms. This review sheds light on future research directions, including the potential therapeutic applications of lncRNAs.  相似文献   

15.
Environmental or abiotic stresses are a common threat that remains a constant and common challenge to all plants. These threats whether singular or in combination can have devastating effects on plants. As a semiaquatic plant, rice succumbs to the same threats. Here we systematically look into the involvement of salicylic acid (SA) in the regulation of abiotic stress in rice. Studies have shown that the level of endogenous salicylic acid (SA) is high in rice compared to any other plant species. The reason behind this elevated level and the contribution of this molecule towards abiotic stress management and other underlying mechanisms remains poorly understood in rice. In this review we will address various abiotic stresses that affect the biochemistry and physiology of rice and the role played by SA in its regulation. Further, this review will elucidate the potential mechanisms that control SA-mediated stress tolerance in rice, leading to future prospects and direction for investigation.  相似文献   

16.
γ-aminobutyric acid (GABA) is a non-protein amino acid involved in various physiological processes; it aids in the protection of plants against abiotic stresses, such as drought, heavy metals, and salinity. GABA tends to have a protective effect against drought stress in plants by increasing osmolytes and leaf turgor and reducing oxidative damage via antioxidant regulation. Guard cell GABA production is essential, as it may provide the benefits of reducing stomatal opening and transpiration and controlling the release of tonoplast-localized anion transporter, thus resulting in increased water-use efficiency and drought tolerance. We summarized a number of scientific reports on the role and mechanism of GABA-induced drought tolerance in plants. We also discussed existing insights regarding GABA’s metabolic and signaling functions used to increase plant tolerance to drought stress.  相似文献   

17.
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.  相似文献   

18.
19.
MicroRNA408 (miR408) is an ancient and highly conserved miRNA, which is involved in the regulation of plant growth, development and stress response. However, previous research results on the evolution and functional roles of miR408 and its targets are relatively scattered, and there is a lack of a systematic comparison and comprehensive summary of the detailed evolutionary pathways and regulatory mechanisms of miR408 and its targets in plants. Here, we analyzed the evolutionary pathway of miR408 in plants, and summarized the functions of miR408 and its targets in regulating plant growth and development and plant responses to various abiotic and biotic stresses. The evolutionary analysis shows that miR408 is an ancient and highly conserved microRNA, which is widely distributed in different plants. miR408 regulates the growth and development of different plants by down-regulating its targets, encoding blue copper (Cu) proteins, and by transporting Cu to plastocyanin (PC), which affects photosynthesis and ultimately promotes grain yield. In addition, miR408 improves tolerance to stress by down-regulating target genes and enhancing cellular antioxidants, thereby increasing the antioxidant capacity of plants. This review expands and promotes an in-depth understanding of the evolutionary and regulatory roles of miR408 and its targets in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号