首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic solar cells (OSCs) are designed based on a blend of polymer donor and small molecular acceptor whereby the thermodynamic relaxation of the morphology raises the concerns related to operational stability. Herein, it is demonstrated that the classical Y6-based binary device can be stabilized by using its derivative of ZCCF3 as the third component, which is designed with the replacing of the thiadiazole group on Y6 with the trifluoromethyl substituted diazepine unit. ZCCF3 delivers not only higher glass transition temperature (Tg) than Y6 but also have hyper-miscibility with Y6, contributing to a favorable diffusion-limited Y6:ZCCF3 alloy when blended with polymer donor. Consequently, a champion power conversion efficiency of 18.54% is achieved in the optimal PM6: Y6: ZCCF3 devices, which can retain their 80% initial efficiency of up to 360 h. This study highlights the importance of high Tg of the third component and its derived hyper-miscible accepter alloys in achieving highly efficient and stable OSCs.  相似文献   

2.
Here, a near-infrared (NIR)-absorbing small-molecule acceptor (SMA) Y-SeNF with strong intermolecular interaction and crystallinity is developed by combining selenophene-fused core with naphthalene-containing end-group, and then as a custom-tailor guest acceptor is incorporated into the binary PM6:L8-BO host system. Y-SeNF shows a 65 nm red-shifted absorption compared to L8-BO. Thanks to the strong crystallinity and intermolecular interaction of Y-SeNF, the morphology of PM6:L8-BO:Y-SeNF can be precisely regulated by introducing Y-SeNF, achieving improved charge-transporting and suppressed non-radiative energy loss. Consequently, ternary polymer solar cells (PSCs) offer an impressive device efficiency of 19.28% with both high photovoltage (0.873 V) and photocurrent (27.88 mA cm−2), which is one of the highest efficiencies in reported single-junction PSCs. Notably, ternary PSC has excellent stability under maximum-power-point tracking for even over 200 h, which is better than its parental binary devices. The study provides a novel strategy to construct NIR-absorbing SMA for efficient and stable PSCs toward practical applications.  相似文献   

3.
Fused-ring non-fullerene electron acceptors (NFAs) boost the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Asymmetric and halogenated NFAs have drawn increasing attention in recent years due to their unique optoelectronic properties. Starting from the symmetric NFA ITCC-M, this work systematically designs and synthesizes an asymmetric counterpart ITCC-M-2F, halogenated counterpart ITCC-Cl, and asymmetric and halogenated counterpart IDTT-Cl-2F. Among these NFAs, IDTT-Cl-2F shows the shallowest lowest unoccupied molecular orbital energy level, broader absorption range, and the tightest molecular packing. As a result, when blended with the donor PBDB-T-2Cl, IDTT-Cl-2F-based OSCs yield the highest PCE of 13.3% with an open-circuit voltage of 0.96 V, short-circuit current of 19.20 mA cm–2, and fill factor of 71.1%, which is the highest PCE of OSCs employing 2-(2-chloro-6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene) malononitrile (ClIC) unit terminated NFA. The results demonstrate the synergistic effect of asymmetry and halogenation toward tuning of the optoelectronic properties of NFAs for high performance OSCs.  相似文献   

4.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

5.
Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier-extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field-effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field-effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built-in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field-effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.  相似文献   

6.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2-difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under-coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high-quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.  相似文献   

7.
介绍了体异质结聚合物太阳电池的基本原理,并分析了限制体异质结有机太阳电池转化效率的因素。从提高激子的产生效率及其解离效率、电极对电荷的引出效率、电池的稳定性以及电池的光谱吸收范围四个方面,综述了提高体异质结聚合物太阳电池能量转化效率的方法。  相似文献   

8.
Semitransparent organic solar cells (ST-OSCs) have attracted increasing attention due to their promising prospect in building-integrated photovoltaics. Generally, efficient ST-OSCs with good average visible transmittance (AVT) can be realized by developing active layer materials with light absorption far from the visible light range. Herein, the development of ultrawide bandgap polymer donors with near-ultraviolet absorption, paired with near-infrared acceptors, is proposed to achieve high-performance ST-OSCs. The key points for the design of ultrawide bandgap polymers include constructing donor–donor type conjugated skeleton, suppressing the quinoidal resonance effect, and minimizing the twist of conjugated skeleton via noncovalent conformational locks. As a proof of concept, a polymer named PBOF with an optical bandgap of 2.20 eV is synthesized, which exhibited largely reduced overlap with the human eye photopic response spectrum and afforded a power conversion efficiency (PCE) of 16.40% in opaque device. As a result, ST-OSCs with a PCE over 10% and an AVT over 30% are achieved without optical modulation. Moreover, colorful ST-OSCs with visual aesthetics can be achieved by tuning the donor/acceptor weight ratio in active layer benefiting from the ultrawide bandgap nature of PBOF. This study demonstrates the great potential of ultrawide bandgap polymers for efficient colorful ST-OSCs.  相似文献   

9.
Organic solar cells (OSCs) with the conventional configuration usually use polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) as the hole-transporting layer (HTL); however, its acidity tends to affect the performance and long-term stability of the devices. Therefore, replacing PEDOT:PSS with other more stable HTLs is essential for realizing the practical applications of OSCs. To achieve this goal, a simple and low-cost vanadyl oxalate (VOC2O4) is identified as a HTL to facilitate high power conversion efficiencies (PCEs), good stability, and high thickness tolerance to be achieved in OSCs. The VOC2O4 thin film can be easily prepared by spin-coating from its aqueous solution onto ITO/glass substrate and thermally annealed at 100 °C to exhibit high transmittance, conductivity, and work function. It can be applied as a robust HTL with wide processing conditions, especially after being heated at 200 °C and treated with UV-ozone (UVO) to afford a very high PCE of 18.94% in OSCs. This value is among the highest PCEs obtained for binary OSCs. In addition, the derived OSCs exhibit high thickness tolerance and better stability than those based on PEDOT:PSS as HTL. These results reveal that VOC2O4 is an excellent HTL for OSCs, having great potential for large-area device applications.  相似文献   

10.
Developing a fundamental understanding of the molecular order within the photoactive layer, and the influence therein of solution casting conditions, is a key factor in obtaining high power conversation efficiency (PCE) polymer solar cells. Herein, the molecular order in PBDB‐T:INPIC‐4F nonfullerene solar cells is tuned by control of the molecular organization time during film casting, and the crucial role of retarding the crystallization of INPIC‐4F in achieving high performance is demonstrated. When PBDB‐T:INPIC‐4F is cast with the presence of solvent vapor to prolong the organization time, INPIC‐4F molecules form spherulites with a polycrystalline structure, resulting in large phase separation and device efficiency below 10%. On the contrary, casting the film on a hot substrate is effective in suppressing the formation of the polycrystalline structure, and encourages face‐on π?π stacking of INPIC‐4F. This molecular transformation of INPIC‐4F significantly enhances the absorption ability of INPIC‐4F at long wavelengths and facilitates a fine phase separation to support efficient exciton dissociation and balanced charge transport, leading to the achievement of a maximum PCE of 13.1%. This work provides a rational guide for optimizing nonfullerene polymer solar cells consisting of highly crystallizable small molecular electron acceptors.  相似文献   

11.
The development of semitransparent organic solar cells (ST‐OSCs) represents a significant step toward the commercialization of OSCs. However, the trade‐off between power conversion efficiency (PCE) and average visible transmittance (AVT) restricts further improvements of ST‐OSCs. Herein, it is demonstrated that a fibril network strategy can enable ST‐OSCs with a high PCE and AVT simultaneously. A wide‐bandgap polymer PBT1‐C‐2Cl that can self‐assemble into a fibril nanostructure is used as the donor and a near‐infrared small molecule Y6 is adopted as the acceptor. It is found that a tiny amount of PBT1‐C‐2Cl in the blend can form a high speed pathway for hole transport due to the well distributed fibril nanostructure, which increases the transmittance in the visible region. Meanwhile, the acceptor Y6 guarantees sufficient light absorption. Using this strategy, the optimized ST‐OSCs yield a high PCE of 9.1% with an AVT of over 40% and significant light utilization efficiency of 3.65% at donor/acceptor ratio of 0.25:1. This work demonstrates a simple and effective approach to realizing high PCE and AVT of ST‐OSCs simultaneously.  相似文献   

12.
The versatility of a fluoro‐containing low band‐gap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b’]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT) in organic photovoltaics (OPVs) applications is demonstrated. High boiling point 1,3,5‐trichlorobenzene (TCB) is used as a solvent to manipulate PCPDTFBT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layer morphology to obtain high‐performance single‐junction devices. It promotes the crystallization of PCPDTFBT polymer, thus improving the charge‐transport properties of the active layer. By combining the morphological manipulation with interfacial optimization and device engineering, the single‐junction device exhibits both good air stability and high power‐conversion efficiency (PCE, of 6.6%). This represents one of the highest PCE values for cyclopenta[2,1‐b;3,4‐b’]dithiophene (CPDT)‐based OPVs. This polymer is also utilized for constructing semitransparent solar cells and double‐junction tandem solar cells to demonstrate high PCEs of 5.0% and 8.2%, respectively.  相似文献   

13.
In this work, polymer solar cells are fabricated based on the blend of PTB7‐Th: PC71BM by using a mixed solvent additive of 1,8‐diiodooctane and N‐methyl pyrrolidone to optimize the morphology of the blend. A high power conversion efficiency (PCE) of 10.8% has been achieved with a simple conventional device. In order to deeply investigate the influence of the mixed solvent additives on the morphology and device performance, the variations of the molecular packing and bulk morphology of the blend film cast from ortho‐dichlorobenzene with single or binary solvent additives are measured. Although all the blend films exhibit similar domain size and nanoscale phase separation, the blend film processed with mixed solvent additive shows the highest domain purity, resulting in the least bimolecular recombination, relatively high Jsc and FF, and hence enhanced PCE. Therefore, the best photovoltaic performance with the Voc of 0.82 V, Jsc of 19.1 mA cm?2, FF of 69.1%, and PCE of 10.8% are obtained for the device based on the blend with binary solvent additive treatment.  相似文献   

14.
Currently, morphology optimization methods for the fused-ring nonfullerene acceptor-based polymer solar cells (PSCs) empirically follow the treatments originally developed in fullerene-based systems, being unable to meet the diverse molecular structures and strong crystallinity of the nonfullerene acceptors. Herein, a new and universal morphology controlling method is developed by applying volatilizable anthracene as solid additive. The strong crystallinity of anthracene offers the possibility to restrict the over aggregation of fused-ring nonfullerene acceptor in the process of film formation. During the kinetic process of anthracene removal in the blend under thermal annealing, donor can imbed into the remaining space of anthracene in the acceptor matrix to form well-developed nanoscale phase separation with bi-continuous interpenetrating networks. Consequently, the treatment of anthracene additive enables the power conversion efficiency (PCE) of PM6:Y6-based devices to 17.02%, which is a significant improvement with regard to the PCE of 15.60% for the reference device using conventional treatments. Moreover, this morphology controlling method exhibits general application in various active layer systems to achieve better photovoltaic performance. Particularly, a remarkable PCE of 17.51% is achieved in the ternary PTQ10:Y6:PC71BM-based PSCs processed by anthracene additive. The morphology optimization strategy established in this work can offer unprecedented opportunities to build state-of-the-art PSCs.  相似文献   

15.
In the past decade, perovskite solar cells (PSCs) have made remarkable progress in improving power conversion efficiency (PCE). In order to further improve the photovoltaic performance and long-term stability of PSCs, the interface layer is essential. A multifunctional cross-linked polyurethane (CLPU) is designed and synthesized via the spontaneous quaternization of polyurethane and 1, 6-diiodohexane on the surface of the perovskite layer. CLPU layer cannot only effectively induce secondary crystallization and passivate the surface defects of perovskite, reduce the non-radiative recombination, but also effectively block the moisture invasion. By this strategy, Cs0.05FA0.95PbI3 PSCs with excellent reproducibility, is realized, achieving a PCE of 23.14% with an open-circuit voltage of 1.11 V, a short-circuit current density of 25.69 mA cm−2, and a fill factor of 0.81. In addition, the unencapsulated devices show enhanced stability in 35 ± 5% relative humidity (RH) near 3000 h and in 65 ± 5% RH over 700 h. This study provides valuable insights into the role of CLPU interface layer in PSCs, which are essential for the design of high-performance devices.  相似文献   

16.
通过制备四种不同结构的器件,详细分析研究了活性层/阴极界面修饰对P3HT:PCBM聚合物体异质结太阳能电池性能的影响。当在P3HT:PCBM薄膜上旋涂一层PCBM,并蒸镀0.5 nm LiF时所制备的器件的填充因子和光电转换效率都得到较大的提高。对器件的光电性能和薄膜的形貌进行深入分析,阐明界面修饰的作用机理。  相似文献   

17.
The conjugated polymer-based solar cell is one of the most promising devices in search Of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.  相似文献   

18.
Molecular innovation is highly desirable to achieve efficient all-small-molecule organic solar cells (SM-OSCs). Herein, three small-molecule donors (SMDs) with alkylated thiazole side groups (namely BO-1, HD-1, and OD-1), which differ only in the alkyl side chain are reported. Although these SMDs possess similar absorption profiles and molecular energy levels, their crystallinity and miscibility with BTP-eC9 slightly decrease along with the elongation of the alkyl side chain. After blending with BTP-eC9, different miscibility leads to different degrees of phase separation. Among these SM-OSCs, the HD-1-based device shows a decent bulk-heterojunction (BHJ) morphology with proper phase separation and more dynamic carrier behavior. Thus, compared to the BO-1 and OD-1-based devices, the HD-1-based device achieves a higher short-circuit current of 26.04 mA cm−2 and a fill factor of 78.46%, leading to an outstanding PCE of 17.19%, which is one of the highest values among SM-OSCs. This work provides a rational design strategy of SMDs for highly efficient SM-OSCs.  相似文献   

19.
With the emergence of ADA'DA-type (Y-series) non-fullerene acceptors (NFAs), the power conversion efficiencies (PCEs) of organic photovoltaic devices have been constantly refreshed and gradually reached 20% in recent years (19% for single junction and 20% for tandem device). The acceptors possess specific design concept, which greatly enrich the NFA types and have excellent compatibility with many donor materials. It is gratifying to note that the previously underperforming donor materials combine with these regulated acceptors to shine again. Nowadays, the concept of modular design is widely used in the research of acceptors and donors, injecting new vitality into the field of organic photovoltaics. Furthermore, these acceptors also promote the research of multicomponent devices, tandem devices, bilayer devices, processing solvent engineering, and additive engineering. Herein, the latest progresses of polymer solar cells with efficiency over 17% are briefly reviewed from the aspects of active material design, interface material development, and device technology. At last, the opportunities and challenges of organic photovoltaic commercialization in the future are discussed.  相似文献   

20.
A series of polymers containing benzo[1,2‐b:4,5‐b′]dithiophene and N‐alkylthieno[3,4‐c]pyrrole‐4,6‐dione are designed. By incorporating different alkylthienyl side chains, the fill factor (FF) and open circuit voltage (Voc) of the copolymers are further improved. The experimental results and theoretical calculations show that the size and topology of the side chains can influence the polymer solubility, energy levels, and intermolecular packing by altering the molecular coplanarity. As a result of improved morphology and fine‐tuned energy levels, an increased FF and a high Voc of 1.00 V are achieved, as well as a power conversion efficiency of 6.17%, which is the highest efficiency ever reported for polymer solar cells with a Voc over 1 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号